Application

Genesis

Test-IT!

User &

Reference

Manual

(Version 1.5)

�Table Of Contents

� TOC \o "1-3" �How to use this Manual	� GOTOBUTTON _Toc433636031 � PAGEREF _Toc433636031 �3��

Introduction	� GOTOBUTTON _Toc433636032 � PAGEREF _Toc433636032 �4��

Overview	� GOTOBUTTON _Toc433636033 � PAGEREF _Toc433636033 �4��

Section 1 - Workflow	� GOTOBUTTON _Toc433636034 � PAGEREF _Toc433636034 �6��

Workflow Overview	� GOTOBUTTON _Toc433636035 � PAGEREF _Toc433636035 �6��

Description of steps in workflow	� GOTOBUTTON _Toc433636036 � PAGEREF _Toc433636036 �6��

Year 2000 testing using Test-IT!	� GOTOBUTTON _Toc433636037 � PAGEREF _Toc433636037 �8��

Overview of testing methodology	� GOTOBUTTON _Toc433636038 � PAGEREF _Toc433636038 �8��

Data Setup using Test-IT!	� GOTOBUTTON _Toc433636039 � PAGEREF _Toc433636039 �9��

Using Test-IT! to check results	� GOTOBUTTON _Toc433636040 � PAGEREF _Toc433636040 �11��

Running batch test scripts	� GOTOBUTTON _Toc433636041 � PAGEREF _Toc433636041 �13��

Batch Job	� GOTOBUTTON _Toc433636042 � PAGEREF _Toc433636042 �14��

Interactive job	� GOTOBUTTON _Toc433636043 � PAGEREF _Toc433636043 �17��

Section 2 - How to . . .	� GOTOBUTTON _Toc433636044 � PAGEREF _Toc433636044 �20��

How to define a Test Id	� GOTOBUTTON _Toc433636045 � PAGEREF _Toc433636045 �20��

How to Capture Screens for a Test Case	� GOTOBUTTON _Toc433636046 � PAGEREF _Toc433636046 �22��

How to Edit a Screen Mask	� GOTOBUTTON _Toc433636047 � PAGEREF _Toc433636047 �23��

Editing the Global Mask	� GOTOBUTTON _Toc433636048 � PAGEREF _Toc433636048 �24��

Editing an Individual Mask	� GOTOBUTTON _Toc433636049 � PAGEREF _Toc433636049 �25��

How to Edit Screen images	� GOTOBUTTON _Toc433636050 � PAGEREF _Toc433636050 �27��

Working with screen images	� GOTOBUTTON _Toc433636051 � PAGEREF _Toc433636051 �27��

Changing Input data	� GOTOBUTTON _Toc433636052 � PAGEREF _Toc433636052 �28��

Loading User Variable data from a screen	� GOTOBUTTON _Toc433636053 � PAGEREF _Toc433636053 �28��

Changing the AID key	� GOTOBUTTON _Toc433636054 � PAGEREF _Toc433636054 �30��

How to Run (or Replay) a Test	� GOTOBUTTON _Toc433636055 � PAGEREF _Toc433636055 �31��

How to Compare Screen Images	� GOTOBUTTON _Toc433636056 � PAGEREF _Toc433636056 �32��

How to Display the Screens from a Test Run	� GOTOBUTTON _Toc433636057 � PAGEREF _Toc433636057 �33��

Section 3 - Working with . . . (Maintenance & Enquiries)	� GOTOBUTTON _Toc433636058 � PAGEREF _Toc433636058 �34��

Working with Test Case Definitions (WRKTSTDFN)	� GOTOBUTTON _Toc433636059 � PAGEREF _Toc433636059 �34��

Working with Test Runs (WRKTSTRUN)	� GOTOBUTTON _Toc433636060 � PAGEREF _Toc433636060 �36��

Work with User Variables	� GOTOBUTTON _Toc433636061 � PAGEREF _Toc433636061 �38��

Work with Test Commands	� GOTOBUTTON _Toc433636062 � PAGEREF _Toc433636062 �39��

Appendix A - Command Syntax	� GOTOBUTTON _Toc433636063 � PAGEREF _Toc433636063 �41��

ADJDATFLD (Adjust Date Fields) command	� GOTOBUTTON _Toc433636064 � PAGEREF _Toc433636064 �41��

CMPDBM (Compare Database Members) command	� GOTOBUTTON _Toc433636065 � PAGEREF _Toc433636065 �44��

CAPSCNTST (Capture Screen Test) command	� GOTOBUTTON _Toc433636066 � PAGEREF _Toc433636066 �47��

CMPSCNIMG (Compare Screen Images) command	� GOTOBUTTON _Toc433636067 � PAGEREF _Toc433636067 �2��

CMPSPLF (Compare Spool Files) command	� GOTOBUTTON _Toc433636068 � PAGEREF _Toc433636068 �4��

CPYKEYRCDS (Copy Key Records) command	� GOTOBUTTON _Toc433636069 � PAGEREF _Toc433636069 �8��

CPYRNDRCDS (Copy Random Records) command	� GOTOBUTTON _Toc433636070 � PAGEREF _Toc433636070 �11��

DSPSCNIMG (Display Screens from a Test Run) command	� GOTOBUTTON _Toc433636071 � PAGEREF _Toc433636071 �14��

EDTSCNMSK (Edit Screen Masks) command	� GOTOBUTTON _Toc433636072 � PAGEREF _Toc433636072 �15��

RUNCLSTM (Run CL Statements) Command	� GOTOBUTTON _Toc433636073 � PAGEREF _Toc433636073 �16��

RUNSCNTST (Run a Screen Test) command	� GOTOBUTTON _Toc433636074 � PAGEREF _Toc433636074 �19��

RUNTSTCMD (Run Test Commands) Command	� GOTOBUTTON _Toc433636075 � PAGEREF _Toc433636075 �23��

WRKTSTDFN (Work with Test Definitions) command	� GOTOBUTTON _Toc433636076 � PAGEREF _Toc433636076 �27��

WRKTSTRUN (Work with Test Runs) command	� GOTOBUTTON _Toc433636077 � PAGEREF _Toc433636077 �28��

��

How to use this Manual

This manual is divided into the following sections:

	Workflow overview. This section provides an overview of the of where the various components are used within the overall software development lifecycle. This section is intended for all users.

	How To... This section provides step by step details of how to perform the specific tasks identified in the workflow overview section. Each topic is written specifically for the person intended to perform that task.

	Work With command descriptions. This section describes the function of the 'Work with' (Interactive inquiry-maintenance) functions. All fields on each display are described, along with all valid options and function keys.

	Report descriptions. This section describes all available reports, identifying all columns and fields on each report.

	Technical reference. This section provides technical information on how the function works, and on the Application Program Interfaces supported. It is intended for Technical support staff, and advanced users - typically developers who need to write their own reports etc.

	Command Syntax Descriptions. This section provides a detailed description of the syntax of all the commands. It is intended for users, typically developers, who have command entry screen access.

�

Introduction

Overview

Test-IT! is designed to automate the regression testing of a system. ie: the testing of existing functions to ensure that changes and enhancements made to the system have not introduced any unwanted side effects (bugs). Test-IT! runs exclusively on the AS/400, requiring only a standard terminal for the capture of tests. Tests are replayed internally in the machine, without the need of any peripheral devices, thus allowing as many tests to be run simultaneously as the machine will support.

Test-IT! has been developed at OS/400 release V2R2. The program library requires approximately 5MB of disk space. The amount of space required for test cases varies according to how full the screen is. As a guideline, allow 4KB per screen. The product uses OS/400's Virtual Device support - this comes standard - so either the appropriate virtual devices need to be configured, or the system values need to be set to allow the automatic creation of virtual devices. (Refer to the installation instructions for details.) No specific hardware is required, other than a terminal of the same type as intended for test replay.

Following are descriptions of the current features of the base product:

	A test is defined as an entire interactive job, ie: from signon to signoff. User Id's and passwords are not kept in any of the Test-IT! files, thus preserving system security.

	Captures screen images, both those sent by the host, and the data entered by the user, and stores them in a data base file for later replay. The device used for capturing the images may be any device that can be attached to an AS/400, as the capture function runs natively on the AS/400.

	Captured sequences can be replayed at any time, either interactively, or as discreet batch jobs. As screens are replayed, they are compared to the original to ensure that the test is proceeding successfully.

	Areas of a screen can be masked for the compare during test replay. Typically device names, job dates and times, and job numbers are masked, as they will change from one run to the next. A mask may be either specific to a screen, or global to all screens.

	Field display attributes, eg: reverse image, highlight, may be either included or excluded in the replay screen comparison.

	As many replay tests may be run simultaneously as required, as no real display devices are required. Thus stress testing and performance testing may also be automated. The tests being replayed may be any combination of previously recorded tests, allowing the impact and interaction between different modules or applications to be observed in a controlled environment.

	Test case images and responses may be modified. Responses may also include special values such as the current date, or x days from the current date. The AID or function key sent with the response may also be modified.

	‘User variables’ may also be defined and used in the response data and screen masking. A user variable may be loaded from any location on the screen. When the nominated screen is displayed during test replay, the contents of the specified location are copied into the user variable. The value of the user variable is kept from one test run to another, so a captured value may be used in subsequent test runs. User variable values may also be set manually via a CL command, thus allowing a value to be calculated by a user written program and loaded into the user variable prior to running a test case. Similarly, the values collected during a test run can be retrieved into a CL program and inspected. User Variables have the following properties:

Persistance - Their values are retained from one job to another.

User Variables are global. They can be accessed and altered by any user of Test-IT!.

TIP: If each user of Test-IT! begins the name of each User Variable he uses with his initials, then there won’t be any “unexpected” results due to a value being changed by someone else’s job.

	The ability to 'cut and paste' screens within a test case.

Functions not supported:

	Only the 24x80 display size is supported at present. The 27x132 display has not been fully tested.

	The attention and system request keys are currently not supported, due primarily to the increased overheads required in capturing them correctly. These will be supported when all limitations are resolved.

�

Section 1 - Workflow

Workflow Overview

Below is a summary table of the steps involved in capturing and replaying an interactive test script.

�PRIVATE ��Step�Task description��1�Define the Test Case to Test-IT!��2�Capture the Test Case screens��3�Edit screen images��4�Run the regression test��5�Verify the success of the test��	

Description of steps in workflow

Define the test case to Test-IT!: Test cases are defined via the Work with Test Definitions (WRKTSTDFN) command. (See WRKTSTDFN on page �pageref WRKTSTDFN�27�)

Capture the test case screens: The screen images for a test case are captured via the Capture Screen Images (CAPSCNIMG) command. (See CAPSCNIMG on page � PAGEREF HowCapScnTst �22�) A test case is an entire interactive job, from signon to signoff. The test case images may be reviewed via the Display Screen Images (DSPSCNIMG) command. (See DSPSCNIMG on page � PAGEREF HowDspScnTstImg �33�)

Edit Screen Images: Typically the following tasks are performed:

Edit Comparison masks. These are used to tell Test-IT! which parts of a screen to bypass when checking for differences. Comparison masks are created and maintained via the Edit Screen Masks (EDTSCNMSK) command. (See EDTSCNMSK on page � PAGEREF HowEdtMsk �23�)

Input data may be changed from the literal entered during capture to a User Variable. Using a User variable for volitile data, such as dates in Y2K testing, is easier than constantly re-editing the images to setup new test runs.

Define areas of screens which are to have their contents “scraped” or copied into a User Variable. Eg: At the completion of a transaction, a transaction number may be displayed. This could be scraped into a User Variable and used later as input data to enquiries and update processing.

Run the regression test: A regression test is a run of a previously defined test case. The regression test may complete either successfully, or if there are too many discrepancies in unmasked areas of an individual screen, the run will be aborted and the test flagged as a failure. A regression test is performed via the Run Screen Test (RUNSCNTST) command. (See RUNSCNTST on page � PAGEREF HowRunScnTst �31�)

Where it is necessary to perform pre-test setup tasks, such as copying test files from a master database, or post-test checking, such as database and spool file comparisons, these tasks may be better suited to be run via the RUNTSTCMD function. This way the tasks are run in batch instead of interactively. The necessary steps may be entered into CL source members, or as individual statements in RUNTSTCMD steps. The WRKTSTCMD function is used to maintain the steps.

Verify the success of the test: At the conclusion of a test a completion message is sent indicating success or failure. Test run results are also kept in a file, which can be enquiried upon via the Work with Test Runs (WRKTSTRUN) command. (See WRKTSTRUN on page � PAGEREF WRKTSTRUN �28�) Screen image discrepancies may also be reproduced via the Compare Screen Images (CMPSCNIMG) command. (See CMPSCNIMG on page � PAGEREF HowCmpScnImg �32�) The test case and test run images may be reviewed via the Display Screen Images (DSPSCNIMG) command. (See DSPSCNIMG on page � PAGEREF HowDspScnTstImg �33�)

�� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\Y2k Tst Method.doc" �Year 2000 testing using Test-IT!

Overview of testing methodology

This section provides an overview of the methodology used to test programs modified for Year 2000.

Summarised testing methodology:

Run the current production version of the program over the test data set to current date. All files, including spool files, that are updated and/or written to are copied to a control library, and used in the comparisons of steps 2 & 3. This is refered to as the Control run.

Run the Y2K version of the program over the test data set to current date. The contents of all files saved in step 1 are compared to the outputs of this run. It is expected that the results will be identical. The purpose of this step is to ensure that program function has not been altered by the changes. This is refered to as the Verify run.

Run the Y2K version of the program over the aged test data set. The contents of all files saved in step 1 are compared to the outputs of this run. It is expected that the results will be identical. The purpose of this step is to ensure that the program will function correctly after 31 December 1999. This is refered to as the Aged Test run.

Capture program execution statistics and ensure that all statements that have been modified have also been executed by at lease one of steps 2 or 3. The purpose of this step is to ensure the test data set is actually exercising the changed code. (NOTE: Program execution analysis does not in itself prove program correctness.)

Assumptions:

A full test database has already been created, so that just the files necessary for this program(s) are copied to the test invironment. (For tools to assist setting up a test database, see ???)

The master copy of the test database is stored in MYCTLDTA

The library used for test objects, both programs and files, is MYTSTLIB

A copy of all test files from the master test database that contain dates has been created in MYCTLDTA3, and all data has been aged three years.

The data to enter has already been determined.

��� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\Y2k eg dta setup.doc" �Data Setup using Test-IT!

This section describes how Test-IT! has been used to assist in setting up test databases.

There are three tools that can be used to assist in test database creation:

CPYRNDRCDS (Copy random Records) copies a random selection of records from the input file to the output file. Assuming normal distributions of data, this will usually result in a representitive subset of the input data.

CPYKEYRCDS (Copy Keyed Records) copies only those records from the input file where a record exists in the reference file with a matching key value. Eg: When loading a history file associated with the master file created with CPYRNDRCDS, only the history records that correspond to the records in the output file from CPYRNDRCDS will be copied by CPYKEYRCDS.

ADJDATFLDS (Adjust Date Fields) will age all nominated date fields in a file by a specified period. The period may be measured in days, months or years, and may be positive or negitive.

Example:

Load the master file (WHDR) with 250 records from the production file. CPYRNDRCDS is used to load this file.

The history and transaction files (VMAS, CSXD, VSFR) are then loaded using CPYKEYRCDS.

Sometimes minor adjustments to the data copied may be required. Eg: resetting print or status flags. The easiest way to accomplish this is to write appropriate SQL statements and use the RUNSQLSTM command. (NOTE: RUNSQLSTM is part of base OS/400, so it is on every AS/400, even if the SQL product is not installed.) Alternatively, a simple RPG or COBOL program could be written.

CL statements (typically stored in a source file and run by RUNCLSTM):

� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\EG1DTASU.CMD" \c AnsiText �/* WHDR */

/* ENSURE THE FILE EXISTS */

CPYF FROMFILE(WARF/WHDR) TOFILE(ROBCTLDTA/WHDR) +

 MBROPT(*REPLACE) CRTFILE(*YES) TORCD(1)

CPYRNDRCDS FROMFILE(WARF/WHDR) TOFILE(ROBCTLDTA/WHDR) NBRRCDS(250)

/* VMAS */

/* ADD ALL VEHICLES IN WHDR */

CPYKEYRCDS FROMFILE(VEHF/VMAS) RELFILE(ROBCTLDTA/WHDR) +

 TOFILE(ROBCTLDTA/VMAS) JOINFLDS((VMSTNO WHSTNO)) +

 MBROPT(*ADD) KEYFLDS(VMSTNO) UNIQUEKEY(1)

/* CNOT */

/* COPY MATCHING CLAIM NUMBERS */

CPYKEYRCDS FROMFILE(WARF/CNOT) RELFILE(ROBCTLDTA/WHDR) +

 TOFILE(ROBCTLDTA/CNOT) JOINFLDS((CNCNUM WHCNUM)) +

 CRTFILE(*YES)

/* CSXD */

/* COPY MATCHING CLAIM NUMBERS */

CPYKEYRCDS FROMFILE(WARF/CSXD) RELFILE(ROBCTLDTA/WHDR) +

 TOFILE(ROBCTLDTA/CSXD) JOINFLDS((XDCNUM WHCNUM)) +

 CRTFILE(*YES)

/* CSXS */

/* COPY MATCHING SORT KEYS */

CPYKEYRCDS FROMFILE(WARF/CSXS) RELFILE(ROBCTLDTA/CSXD) +

 TOFILE(ROBCTLDTA/CSXS) JOINFLDS((XSSKEY XDSKEY)) +

 CRTFILE(*YES)

/* VSFR */

/* COPY MATCHING VEHICLE STOCK NUMBERS */

CPYKEYRCDS FROMFILE(WARF/VSFR) RELFILE(ROBCTLDTA/VMAS) +

 TOFILE(ROBCTLDTA/VSFR) JOINFLDS((SFSTNO VMSTNO)) +

 CRTFILE(*YES)

�

�

/* Reset flags in master file */

RUNSQLSTM PGM710SQL1

* PGM741SQL1 ***

� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\EG1SQL.CMD" \c AnsiText �UPDATE ROBTSTDTA/WHDR SET WHCTYP = 'X', WHST01=' '

�

�

��� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\Y2K eg comp.doc" �Using Test-IT! to check results

This section describes how Test-IT! is used to check the results of test runs, specifically in the Y2K scenario. Only database and spool files are covered by this topic. For a discussion on interactive screens see ???.

There are two tools to assist in checking the results of a test run:

CMPDBM which compares the contents of one database (physical or logical) file to another. Either the entire records or byte ranges can be compared. Nominated fields, such as time of last update, can be ignored. Fields may also be nominated as date fields and aged a specified period.

CMPSPLF which compares the contents of one spool file to another. Heading lines are ignored. Columns may be specified as dates and aged a specified period. CMPSPLF is also able to compare the contents of the output files of the CPYSPLF command, thus allowing the control data to be stored in a library with control database files and backed up.

Examples:

The following example comapres the file WHDR after a test run to the control version.

CMPDBM		ctlfile(MYCTLDTA/WHDR) +

examine(MYTSTDTA/WHDR) +

ctlmbr(PGM632) +

exammbr(*FIRST) +

ignflds(WHETIM)

The following example compars the same file after a run where the database has bee aged 3 years.

CMPDBM ctlfile(MYCTLDTA/WHDR) examfile(MYTSTDTA/WHDR) +

 ctlmbr(PGM632) exammbr(*FIRST) +

 fields(WHSUBD WHACDT WHCLPD WHSBID WHUKCD WHUKSD) +

daysadj(3) adjtyp(*YEARS) datfldfmt(*YMD) ignflds(WHETIM) badupddat(*YES)

The following example compares spool file PGM603A in the current job to the control spool file saved in database file MYCTLDTA/PGM603A. Print lines 1 thru 6 of each page are part of the heading, and are not compared.

CMPSPLF ctlsplf(*DBF) ctlspldbf(MYCTLDTA/PGM603A) +

 chksplf(PGM603A) hdglin(6)

The following example compares the same spool file after a run where the database has bee aged 3 years.

CMPSPLF ctlsplf(*DBF) ctlspldbf(MYCTLDTA/PGM603A) +

 chksplf(PGM603A) hdglin(6) +

 datflds((68 75) (78 85) (97 104)) +

 daysadj(3) adjtyp(*YEARS)

��� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\Run test scripts.doc" �Running batch test scripts

This section describes the features for running batch test scripts.

NOTE: As the RUNSCNTST command is designed to execute in batch, batch test scripts can be used to initiate interactive tests as well.

There are two levels of functionality available to run test scripts:

1) Simple

This level executes all the CL statements in a source member. This provides a convenient way of storing the setup and test commands that would otherwise be entered from a command line, without the need of creating a program object. A simple 'job log' may also be printed. Comments may also be entered, providing documentation of each step in the script.

2) Detailed

This level is designed as the batch complement of the original interactive tool by taking the above functionality and adding the following features:

Multiple members are supported. This allows the setup and result confirmation procedures for a program to be standardised, while different test scenarios are contained in different members. Each member is designated as one of the following types:

Setup

Execute the test

Post test 'successful' processing

Post test 'unsuccessful' processing

Housekeeping and cleanup

This provides for the assembly of complex test scripts using simple components. If test scripts were used during program unit testing, using either RUNCLSTM or RUNTSTCMD, then these scripts can be re-used when constructing the systems test scripts, thus simplifying the task of preparing the system test.

User Variables

The same facilities provided by User Variables for the interactive tool are provided for CL commands, namely the substitution of predefined data prior to command execution. (ie: This still only supports commands that can be executed from a command line.)

Conditional execution

Release 2.2 supports condition execution of a script step. The value of a User Variable may be compared to a literal or another User Variable.

�

�� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\Y2k eg batch.doc" �Batch Job

This section describes how Test-IT! has been used to automate the testing Year 2000 batch jobs.

Overview of test procedure:

There are three test scripts (source members), one for each of the tests: Control, Verfiy, and Aged test.

The RUNCLSTM command is used to execute the test scripts, as there is no need for User Variables with this technique.

The batch program being tested, PGM632, updates file WHDR and outputs to file WJ631. Also, two spool files are created, PGM603A and PGM603B.

Each of the scripts has three steps:

Setup data

Run the program under test

Save or compare the results

The Control run saves the output into library MYCTLDTA, while the Verify and Aged test scripts compare their output to the saved version.

**

/* PGM631CTL - Control run */

/* Setup the files */

� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\EG1CTL.CMD" \c AnsiText �DLTJOBSPLF JOB(*FIRST/*CURRENT/*CURRENT)

CPYF ROBCTLDTA/WHDR ROBTSTDTA/WHDR *N *N *REPLACE

RUNSQLSTM SRCFILE(WAR) SRCMBR(WAR631SQL1) COMMIT(*NONE)

CPYF ROBCTLDTA/WCTL ROBTSTDTA/WCTL *N *N *REPLACE

CLRPFM ROBTSTDTA/WJ631

OVRDBF FILE(WHDRL04) SHARE(*YES)

OPNQRYF FILE((WHDRL04)) KEYFLD(*FILE) +

 QRYSLT('WHCTYP *EQ "X" *AND WHST01 *EQ " " *AND +

 WHSBID *GE 960101 *AND WHSBID *LE 971231')

CALL PGM(WAR632) PARM(I X'0960101F' X'0971231F')

CPYF ROBTSTDTA/WJ631 ROBCTLDTA/WJ631 *N WAR632 *REPLACE *YES

CPYF ROBTSTDTA/WHDR ROBCTLDTA/WHDR *N WAR632 *REPLACE *YES

CPYSPLF FILE(WAR603AO) TOFILE(ROBCTLDTA/WAR603AO) CTLCHAR(*FCFC)

CPYSPLF FILE(WAR603BO) TOFILE(ROBCTLDTA/WAR603BO) CTLCHAR(*FCFC)

�

�

**

/* PGM631VLD - Verify run */

/* Setup the files */

CPYF MYCTLDTA/WHDR MYTSTDTA/WHDR *N *N *REPLACE

RUNSQLSTM SRCFILE(WAR) SRCMBR(WAR631SQL1) COMMIT(*NONE)

CPYF MYCTLDTA/WCTL MYTSTDTA/WCTL *N *N *REPLACE

CLRPFM MYTSTDTA/WJ631

OVRDBF FILE(WHDRL04) SHARE(*YES)

OPNQRYF FILE((WHDRL04)) KEYFLD(*FILE) +

 QRYSLT('WHCTYP *EQ "X" *AND WHST01 *EQ " " *AND +

 WHSBID *GE 960101 *AND WHSBID *LE 971231')

/* Run new programs over base data Program(s) */

CALL PGM(PGM632) PARM(I X'0960101F' X'0971231F')

/* Compare the output */

CMPDBM CTLFILE(MYCTLDTA/WJ631) EXAMFILE(MYTSTDTA/WJ631) +

 CTLMBR(PGM632) EXAMMBR(*FIRST) IGNFLDS(WJTIME)

CMPDBM CTLFILE(MYCTLDTA/WHDR) EXAMFILE(MYTSTDTA/WHDR) +

 CTLMBR(PGM632) EXAMMBR(*FIRST) IGNFLDS(WHETIM)

/* Compare spool files */

CMPSPLF CTLSPLF(*DBF) CTLSPLDBF(MYCTLDTA/PGM603A) +

 CHKSPLF(PGM603A) HDGLIN(6)

CMPSPLF CTLSPLF(*DBF) CTLSPLDBF(MYCTLDTA/PGM603B) +

 CHKSPLF(PGM603B) HDGLIN(6) CHKRNG((1 12) (35 110) (116))

/* PGM631TST - Aged test run */

/* Setup the test files & age 3 years */

CPYF MYCTLDTA/WHDR MYTSTDTA/WHDR *N *N *REPLACE

ADJDATFLD FILE(MYCTLDTA/WHDR) FIELDS(WHREPD WHSLDT WHSUBD WHACDT +

 WHCLPD WHSBID WHUKCD WHUKSD) DAYSADJ(3) ADJTYP(*YEARS) +

 DATFLDFMT(*YMD) BADDATUPD(*YES)

RUNSQLSTM SRCFILE(WAR) SRCMBR(WAR631SQL1) COMMIT(*NONE)

CPYF MYCTLDTA/WCTL MYTSTDTA/WCTL *N *N *REPLACE

ADJDATFLD FILE(MYCTLDTA/WFRN) FIELDS(WFCTDT) DAYSADJ(3) +

 ADJTYP(*YEARS) DATFLDFMT(*YMD) BADDATUPD(*YES)

CLRPFM MYTSTDTA/WJ631

OVRDBF FILE(WHDRL04) SHARE(*YES)

OPNQRYF FILE((WHDRL04)) KEYFLD(*FILE) +

 QRYSLT('WHCTYP *EQ "X" *AND WHST01 *EQ " " *AND +

 WHSBID *GE 990101 *OR WHSBID *LE 001231')

/* Run new program(s) over aged data */

CALL PGM(PGM632) PARM(I X'0990101F' X'0001231F')

/* Compare the output, aging date fields in the control file */

CMPDBM CTLFILE(MYCTLDTA/WJ631) EXAMFILE(MYTSTDTA/WJ631) +

 CTLMBR(PGM632) EXAMMBR(*FIRST) FIELDS(WJDATE) +

 DAYSADJ(3) ADJTYP(*YEARS) DATFLDFMT(*DMY) IGNFLDS(WJTIME)

CMPDBM CTLFILE(MYCTLDTA/WHDR) EXAMFILE(MYTSTDTA/WHDR) +

 CTLMBR(PGM632) EXAMMBR(*FIRST) +

 FIELDS(WHREPD WHSLDT +

 WHSUBD WHACDT WHCLPD WHSBID WHUKCD WHUKSD) DAYSADJ(3) +

 ADJTYP(*YEARS) DATFLDFMT(*YMD) IGNFLDS(WHLDAT WHLTIM +

 WHLUSR WHEDAT WHETIM WHEUSR WHEWRK) BADDATUPD(*YES)

/* Compare spool files, aging date columns on the control report */

CMPSPLF CTLSPLF(*DBF) CTLSPLDBF(MYCTLDTA/PGM603A) +

 CHKSPLF(PGM603A) HDGLIN(6) +

 DATFLDS((68 75) (78 85) (97 104)) +

 DAYSADJ(3) ADJTYP(*YEARS)

CMPSPLF CTLSPLF(*DBF) CTLSPLDBF(MYCTLDTA/PGM603B) +

 CHKRNG((1 12) (35 110) (116)) +

 CHKSPLF(PGM603B) HDGLIN(6) DATFLDS((68 75) (78 85) +

 (97 104)) DAYSADJ(3) ADJTYP(*YEARS)

��� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\Y2k eg inter.doc" �Interactive job

This section describes how Test-IT! has been used to automate the highly repetitive areas of Year 2000 testing of interactive jobs.

Overview of test procedure:

The RUNTSTCMD (Run test commands) function is used because of its ability to substitute User Variable values into the CL statements before they are executed. Script (source member) PGM710RUN is used as the test driver for all tests.

PGM710RUN performs three steps: Test run data setup, performed by the first RUNCLSTM command; Run the interactive job, performed by RUNSCNTST; and post run processing, performed by the second RUNCLSTM command. NOTE: The value entered for the password parameter is a dummy password. The actual password is supplied at runtime via the RUNTSTCMD used to process these scripts.

The three data setup scripts, PGM710Dxxx, are identical, except for the from library in the TST module, which uses pre-aged data for speed.

The PGM710CALL script is used in the interactive job to collect all the file overrides into one place. The statements in this module could just as easily have been entered into a command entry screen from the interactive job (particularly in simple cases like this).

Post run processing is performed by the appropriate PGM710Pxxx scripts. PGM710PCTL makes a copy of the outputs in the control library. The VLD and TST modules compare the output of the current run to the control output, with TST also aging the control output.

The following User Variables are used:

&MYRUNMODE is set to either CTL, VLD, or TST, and determines which test mode to use.

&MYDMY1 is set to the job date the test run is to have.

&MYCURLIB is set to the library that contaions the version of the progam to be used for the test.

&MYEXCANL is normally set to *NONE. When it is desired to capture program execution data, this variable is set to the program name. (ie: PGM710)

Notice that in some cases the User Variable begins in the middle if the string. (eg: PGM710D&MYRUNMODE) This is quite acceptable, as the run-time module simply scans for an &, and then extracts the User Variable name from there. Thus in the above example, if MYRUNMODE contained “TST”, the resulting string would be PGM710DTST.

**

/* Script PGM710RUN */

RUNCLSTM PGM710D&MYRUNMODE Y2KTST/PGM JOBD(*NONE)

RUNSCNTST APP(PGM) +

TST(PGM710Y2K) +

PWD(ABC) +

USERID(MYTST) +

JOBDATE(&MYDMY1) +

CURLIB(&MYCURLIB) +

TIMOUT(99999) +

TEXT('Mode: &RobRunMode Date: &RobDmy1') +

MBROPT(*LAST) +

PRTOPT(*ALL) +

JOBD(*NONE) +

PGMEXCANL(&MYEXCANL)

RUNCLSTM PGM710P&MYRUNMODE Y2KTST/PGM JOBD(*NONE)

CHGUSRVAR MYEXCANL *NONE /* so there is no unnecessary execution data collected */

**

/* Script PGM710CALL - Perform any necessary file overrides, and call the program. */

/* OVERRIDE DATABASE FILES */

OVRDBF FILE(WHDRL01X) TOFILE(WHDRL09) SHARE(*NO)

OVRDBF FILE(GDWLL01X) TOFILE(GDWLL01) SHARE(*NO)

CALL PGM(PGM710) PARM('1' '03000' X'0377000F')

**

/* Script PGM710DCTL - Setup files for “control” run. */

CPYF MYCTLDTA/WCTL MYTSTLIB/WCTL *N *N *REPLACE

CPYF MYCTLDTA/WHDR MYTSTLIB/WHDR *N *N *REPLACE

CPYF MYCTLDTA/VMAS MYTSTLIB/VMAS *N *N *REPLACE

CPYF MYCTLDTA/DPMX MYTSTLIB/DPMX *N *N *REPLACE

/* Set the From & To date user variables. (These are used as input data on an interactive job’s screen) */

CHGUSRVAR MYDTFROM 010197

CHGUSRVAR MYDTTO 311299

**

/* Script PGM710DTST - Setup files for “aged test run” run. */

CPYF MYCTLDTA3/WCTL MYTSTLIB/WCTL *N *N *REPLACE

CPYF MYCTLDTA3/WHDR MYTSTLIB/WHDR *N *N *REPLACE

CPYF MYCTLDTA3/VMAS MYTSTLIB/VMAS *N *N *REPLACE

CPYF MYCTLDTA3/DPMX MYTSTLIB/DPMX *N *N *REPLACE

/* Set the From & To date user variables. */

CHGUSRVAR MYDTFROM 010100

CHGUSRVAR MYDTTO 311202

**

/* Script PGM710DVLD - Setup files for Verification run. */

CPYF MYCTLDTA/WCTL MYTSTLIB/WCTL *N *N *REPLACE

CPYF MYCTLDTA/WHDR MYTSTLIB/WHDR *N *N *REPLACE

CPYF MYCTLDTA/VMAS MYTSTLIB/VMAS *N *N *REPLACE

CPYF MYCTLDTA/DPMX MYTSTLIB/DPMX *N *N *REPLACE

CHGUSRVAR MYDTFROM 010197

CHGUSRVAR MYDTTO 311299

**

/* Script PGM710PCTL - Save the output from the control run */

CPYF MYTSTLIB/WHDR MYCTLDTA/WHDR *N PGM710 *REPLACE

CPYF MYTSTLIB/WPAR MYCTLDTA/WPAR *N PGM710 *REPLACE

**

/* Script PGM710PTST - Compare the output from the aged test run (to the control) */

CMPDBM	CTLFILE(MYCTLDTA/WHDR) EXAMFILE(MYTSTLIB/WHDR) +

CTLMBR(PGM710) +

EXAMMBR(*FIRST) +

FIELDS(WHREPD WHSLDT +

WHSUBD WHACDT WHCLPD WHSBID WHUKCD WHUKSD) +

DAYSADJ(3) +

ADJTYP(*YEARS) +

DATFLDFMT(*YMD) +

IGNFLDS(WHLDAT +

WHLTIM WHLUSR WHEDAT WHETIM WHEUSR WHEWRK) +

BADDATUPD(*YES)

CMPDBM	CTLFILE(MYCTLDTA/WPAR) +

EXAMFILE(MYTSTLIB/WPAR) +

CTLMBR(PGM710) +

EXAMMBR(*FIRST)

**

/* Script PGM710PVLD - Compare the output from the Verify run (to the control) */

CMPDBM	CTLFILE(MYCTLDTA/WHDR) +

EXAMFILE(MYTSTLIB/WHDR) +

CTLMBR(PGM710) +

EXAMMBR(*FIRST) +

IGNFLDS(WHEDAT WHETIM +

WHEUSR WHEWRK WHLDAT WHLTIM WHLUSR WHLWRK)

CMPDBM	CTLFILE(MYCTLDTA/WPAR) EXAMFILE(MYTSTLIB/WPAR) +

CTLMBR(PGM710) EXAMMBR(*FIRST)

**

�

�

Section 2 - How to . . .

How to define a Test Id

A Test Id needs to be defined before a set of screens can be captured for a test case. Test Id's also need to be associated with an Application. Test Id's must be unique within an application, but may be duplicated across application Id's.

Test Id's are defined via the Work with Test Definitions (WRKTSTDFN) command. From a command line, enter the following:

	WRKTSTDFN	application-id

A list of current test cases is displayed (Fig. 2.1).

�PRIVATE �� Test Cases for Application: BANK

 Options: 2=Change 4=Delete 5=Display 7=Test runs

 TEST ID TEST DESCRIPTION

 _ OPEN_AC Open a new account

 _ DEPOSIT Deposit funds into an account

 _ ORDCHKBOOK Order a cheque book

 _ BALANCE Account Balance Enquiry

 Bottom

 F3=Exit F6=Create F12=Cancel

Fig. 2.1

Pressing F6 from the work with list will display the Test Case Maintenance screen (Fig. 2.2)

�PRIVATE �� Test Case Maintenance

 Key in data, press ENTER

 Application Id __________

 Test Id __________

 Test member name

 Test description __

 Test Type _

 Exec environment _

 Number of test runs 0

 Number failed 0

 Extended text __ __

 F3=Exit F12=Cancel

Fig. 2.2

Field descriptions:

Application Id and Test Id must be valid system names, ie: begin with an alphabetic, and contain only alphabetic and numeric characters.

Test description and Extended text are both free form description fields.

Test type is a user defined field to describe the type of test being recorded. eg: D for Data entry, E for Enquiry, X for mixed.

Exec environment identifies the environment the test is to be executed in. Possible values are:

	I - Interactive

	J - Interactive debug mode

	B - Batch

	D - Batch debug mode

	A - Any environment

Note: This field is currently not validated or used by any of the test tools.

Test member name, Nbr of test runs and Number failed are output only fields that are not displayed when adding records.

When all data has been entered, press the ENTER key to add the record to the database, and return to Fig 2.1.

�

How to Capture Screens for a Test Case

This section describes how to capture a set of screen images that will form a test case.

When designing your test cases, remember that a test begins from the signon display, and ends with a signoff. You may have only one signon per test - the initial one - so if a function you intend to perform during the test executes a signoff, that will terminate the screen capture function. Also consider that small tests are usually better than large tests, unless you are doing volume or stress tests, as it is easier to combine them in different sequences. This is easily accomplished with a Dependent Job Scheduler, such as is available from Application Genesis (free! + distribution costs).

For a full description of the CAPSCNTST command and its parameters, refer to Appendix A.

To begin capturing screens, on a command line enter the following:

	CAPSCNTST	APP(application_id)	TST(test_id)	password

The Application_id and Test_id must have previously been defined. (See "How to define a test case on" page �pageref TSTDFNHOW�20�)

The Password is your own password, unless you also enter a user id. Security note: After the command has executed, the password will not be displayed.

The CAPSCNTST function will automatically sign you on to another interactive job, at a virtual display. From here until you sign this job off, you will only see and enter what will be captured, CAPSCNTST does not modify these screens in any way. Proceed by entering all the necessary menu options/commands necessary to perform the test. When the test is complete, enter a signoff option or command to end the capture function and return you to your original session. Although the test is now ready for replay, you will usually need to create some edit masks where there is variable data unrelated to the test (eg: date, time, device name).

Notes:

	If the System Request keys are pressed, the System Request function will be evoked for your original interactive session. Secondary job support for the test case job is currently not supported.

	It is the input data entered in response to a screen that is captured, not all of the actual key strokes that generated that data. eg: If you enter a value in a field, then back tab and change it several times, it is only the final contents that are recorded and replayed.

	Your Key-Think time is being measured and recorded while responding to each of the test screens, and is one of the key-think times that may be used for replay. Therefore if you require realistic key-think times for test replays, have someone who is familiar with the application perform the test case capture.

	The Attention key is currently not supported while capturing test cases.

How to Edit a Screen Mask

This section describes how to create or modify an edit mask for the set of screens in a test case. The edit mask is then used during test replay to control which sections of the screen are compared to ensure that the test is proceeding correctly.

There are two masks that are applied to each screen before it is compared during replay:

A global mask, applicable to all screens, and

A specific mask for that screen (if created).

For a full description of the EDTSCNMSK command and its parameters, refer to Appendix A.

To edit a set of masks, on a command line enter the following:

	EDTSCNMSK		APP(application)	TST(testid)

The Application and Test_id must have previously been defined, and the test screens captured. (See "How to define a test case on" page �pageref TSTDFNHOW�20�)

The Work with Masks panel is displayed (Fig. 2.3), which lists the first line of each captured screen.

�PRIVATE �� Work with Masks

 Options: 7=Individual masks 9=Global mask

 Scn # First line of screen

 _ 1 Display Program Messages

 _ 2 Bank Main Menu

 _ 3 Customer Search

 _ 4 Open New Account

 _ 5 Bank Main Menu

 F3=Exit F12=Cancel

Fig. 2.3

Column Descriptions:

Scn # 	The sequential order in which the screens were displayed.

First line of screen Positions 7 thru 79 of the first line.

Option Descriptions:

7	Create/Maintain the individual mask for the selected screen.

9	Maintain the global mask for all screens.

Editing the Global Mask

To edit the global mask, enter a "9" against the screen that is most typical of the screens in the test, and press ENTER. This usually won't be the first screen, as it will most likely be a menu. The full image of that screen will be displayed, except for line 24, which will appear as below:

F3=Exit F6=Begin mask F10=Delete mask F11=Line 24 toggle F22=Delete all masks

Adding a masked area

To define a masked area, perform the following steps:

Move the cursor to the beginning of the area to be masked (excluded from comparison).

Press F6, this will change the Line 24 text to the following:

Move cursor to end of mask area and press ENTER, or F12 to reset

Move the cursor to the end of mask area to be masked, and press ENTER. The defined area will be redisplayed in reverse image, and the original Line 24 text will be displayed.

Note: The end of the mask area may be above or below the starting point. eg: If the current cursor position is closer to the bottom (or end) of the mask area, then move the cursor to that location, press F6, then move the cursor to the top (or beginning) of the mask area and press ENTER, the coordinates will be automatically reversed.

Define other areas as described above.

When all non-sensitive areas have been masked, press F12 to return to Fig. 2.3.

Notes:

	If the cursor is already in a masked area when F6 is pressed, an error message will be displayed.

	The end of a mask area may overlap an existing mask. If this happens, the two masks will be concatenated into a single mask. (eg: a delete via F10 will unmask the entire area)

	A mask cannot begin at the bottom of a screen and wrap around to the top due to internal coordinate swapping. If this is required, to separate areas must be defined.

	All special display attributes within a masked area are turned off for display purposes only, they are not removed from the screen image file.

Removing a masked area

To remove a masked area, perform the following steps:

Move the cursor to any part of the mask.

Press F10. The masked area will now be redisplayed with its original display attributes.

Editing an Individual Mask

To edit an individual mask for a screen, enter a "7" against that screen, and press ENTER. The full image of that screen will be displayed, except for line 24, which will appear as below:

F3=Exit F6=Begin mask F10=Delete mask F11=Line 24 toggle F22=Delete all masks

Adding a masked area

To define a masked area, perform the following steps:

Move the cursor to the beginning of the area to be masked (excluded from comparison).

Press F6, this will change the Line 24 text to the following:

Move cursor to end of mask area and press ENTER, or F12 to reset

Move the cursor to the end of mask area to be masked, and press ENTER. The defined area will be redisplayed in reverse image, and the original Line 24 text will be displayed.

Note: The end of the mask area may be above or below the starting point. eg: If the current cursor position is closer to the bottom (or end) of the mask area, then move the cursor to that location, press F6, then move the cursor to the top (or beginning) of the mask area and press ENTER, the coordinates will be automatically reversed.

Define other areas as described above.

When all non-sensitive areas have been masked, press F12 to return to Fig. 1.

Notes:

	If the cursor is already in a masked area when F6 is pressed, an error message will be displayed.

	The end of a mask area may overlap an existing mask. If this happens, the two masks will be concatenated into a single mask. (eg: a delete via F10 will unmask the entire area)

	A mask cannot begin at the bottom of a screen and wrap around to the top due to internal coordinate swapping. If this is required, to separate areas must be defined.

	All special display attributes within a masked area are turned off for display purposes only, they are not removed from the screen image file.

	If a mask is required on line 24, the original contents may be displayed by pressing F11. Masking of line 24 may be done with wither text displayed.

Removing a masked area

To remove a mask from the screen image, perform the following steps:

Move the cursor to any part of the mask.

Press F10. The masked area will now be redisplayed with its original display attributes.

To remove all masks, press F22.

�

How to Edit Screen images

Working with screen images

 Work with Screen Images

 Options: 1=Chg I/p data 2=Chg image 3=Copy 4=Delete 6=Undelete 8=Masks 9=Chg AID

 Scn # First line of screen

 _ 1

 _ 2

 _ 3 DISPLAY JOB

 _ 4

 _ 5 Edit HOUSEKEEP/ROBWRK CHKOBJSRC3

 _ 6 Edit HOUSEKEEP/ROBWRK CHKOBJSRC3

 _ 7 Edit HOUSEKEEP/ROBWRK CHKOBJSRC3

 _ 8 HOUSEKEEP/ROBWRK CHKOBJSRC3 Ck Tab HI Cvt ==

 _ 9 HOUSEKEEP/ROBWRK CHKOBJSRC3 Ck Tab HI Cvt ==

 _ 10 Exit Options

 _ 11

 _ 12 SIGN OFF (SIGNOFF)

 BOTTOM

Fig. 3.?

Valid Options:

1 Change Input data - This option allows the data originally entered by the user to be altered. Subsequent runs of RUNSCNTST will use the modified data. Data supplied from user variables is also specified via this option.

2 Change Image - This option allows literals and output only fields to be changed. The new value is what will be used for comparison in subsequent runs of RUNSCNTST.

3 Copy - Copy the selected screen image to a new location. The target location is specified by entering either option “A”-After or “B”-Before in the option field of the appropriate screen. (Note: The screen numbers will be out of sequence for the new screens, but they will be stored in the sequence as shown on the display.)

4 Delete - deletes the screen image from the test case. (Note: This is a ‘soft delete’ and may be undone via option 6)

6 Undelete - Re-activates a screen previously marked for deletion.

7 Scrape User Variables - This option displays the full screen image and allows the screen locations that are to be scraped into user variables to be defined. NOTE: The User variables must have already been defined via CHGUSRVAR or WRKUSRVAR.

8 Edit masks - Displays the masks for the selected screen and allows them to be edited.

9 Change AID - This option allows the Attention Identification (AID) code to be changed. The AID code specifies which key was pressed to transmit the screen.

Valid Function keys:

F3 	Display the Exit options window (any unprocessed list options are ignored).

F12	Ignore unprocessed list options and Display the Exit options window.

 Save the changes (0=No 1=Yes) 1

Options:

1 - Will copy the workspace back to the main database.

2 - Will discard the contents of the workspace.

Changing Input data

To edit the values in input fields for a screen, enter a "1" against that screen, and press ENTER. The full image of that screen will be displayed, except for line 24, which will appear as below:

Enter new data then ENTER or Fn10=Varible Fn11=Line 24 switch Fn12=Cancel

The original input data will be displayed in the input fields, which will allow their contents to be changed.

Replacing input data

Key the new values over the existing data. If the new value is shorter than the existing value, blank out the remainder of the field.

Specifying data from a User Variable

To specify the input data is to be sourced from a user variable, place the cursor at the beginning of the field and press F10. A list of User Variables will be displayed. Select the desired Variable with option “1”. The application screen will be redisplayed with the User Variable name in the input filed. This field will now be protected.

To remove a User Variable from an input field.

Place the cursor at the beginning of the field and press F10. A list of User Variables will be displayed. Select the *USRDTA special value with option “1”. The application screen will be redisplayed with the original input data in the input filed, and this field will now be un-protected.

Loading User Variable data from a screen

To define User Variables to be loaded from a screen, enter a "7" against that screen, and press ENTER. The full image of that screen will be displayed, except for line 24, which will appear as below:

F3=Exit F6=Begin field F10=Delete field F12=Cancel

The screen image will be displayed in protected mode, and any reverse image display attributes will be converted to normal display mode.

Adding a User Variable to be scraped

Move the cursor to the beginning of the area to be loaded into the User Variable, and press F6.

Move the cursor to the end of the load area and press ENTER.

A list of defined User variables will be displayed. Select the desired Variable via option “1”. The application screen will be redisplayed with the selected area displayed in reverse image.

Displaying which User Variable is to be scraped

Move the cursor to the beginning of the area to be loaded into the User Variable, and press F11.

The list of defined User variables will be displayed with a “1” against the User Variable to be loaded. Press ENTER to return to the application screen.

Removing a User Variable scraped area

Move the cursor to the beginning of the area to be loaded into the User Variable, and press F10.

The reverse image area will be restored to normal mode, and that area will no longer be scraped into a User Variable.

Changing the AID key

To change the key that causes the screen to be sent to the host, enter a "9" against that screen, and press ENTER. Figure 3.? Will be displayed

Change AID

 Options: 1=Select

 AID

 1 *ENTER _ FN 8 _ FN 16 _ FN 24

 _ FN 1 _ FN 9 _ FN 17 _ *ROLLUP

 _ FN 2 _ FN 10 _ FN 18 _ *ROLLDOWN

 _ FN 3 _ FN 11 _ FN 19 _ *HELP

 _ FN 4 _ FN 12 _ FN 20 _ *PRINT

 _ FN 5 _ FN 13 _ FN 21 _ *CLEAR

 _ FN 6 _ FN 14 _ FN 22 _ *HOME

 _ FN 7 _ FN 15 _ FN 23

 BOTTOM

Fig. 3.?

Enter a “1” against the key that is to cause the screen to be sent to the host.

�

How to Run (or Replay) a Test

This section describes how to run, or replay, a captured test case.

Performance note: While the RUNSCNTST command is run in batch mode, there will be an associated interactive job for each copy of RUNSCNTST being executed. Therefore volume and stress testing should be scheduled for a period when machine activity is low. (Note: The ADDSCHJOBE command or SCDTIME parameter on the SBMJOB command can be used to schedule test runs for a time when the machine is unattended.)

To replay a test enter the following:

	RUNSCNTST APP(application) TST(testid) PWD(password) jobq(QS36EVOKE)

The Application and Test Id's must have been previously defined, and the test case screens captured via CAPSCNTST.

The Password is your own password, unless you also enter a user id.

The QS36EVOKE job queue has been specified as it has no maximum for its active jobs, thus allowing multiple tests to run simultaneously. The subsystem description or shared pool may need to be changed to support the number of concurrent tests to be run. If tests are to be executed sequentially, then specify QBATCH in the job queue parameter.

Security note: On OS/400 V2R2 thru V3R2, if the SBMJOB command is used to submit RUNSCNTST to batch, the password is not removed from the command string of the CMD parameter.

The RUNSCNTST activates a Virtual Device, signs on to it using the parameters on the command, then begins replaying the nominated test case. The unmasked areas of each screen are compared to the test case. If there are any differences, the screen image is printed on a report, the virtual device is signed off, and the test run aborts. The screens generated during the test run may be reviewed via the DSPSCNIMG command (See page � PAGEREF HowDspScnTstImg �33�)

Operational note: It is strongly recommended that the batch replay job NOT be canceled during its execution, as it will not be able to correctly deallocate the virtual device, which may leave it unavailable until the next IPL. If there is a need to terminate the batch job, terminate just the associated interactive job. Unless the replay job is malfunctioning, this will automatically terminate the batch job, allowing it to correctly deallocate the virtual terminal.

How to Compare Screen Images

This section describes how to compare the screen images of a test run and test case, or of two test runs of a test case. The output is a report.

For a full description of the command syntax, see appendix A.

To compare a test run to the test case, from a command line, enter the following:

	

	CMPSCNIMG		app(BANK)		tst(NEWCUST)		tstrun(*LAST) prtopt(*ALL)

The Application and Test Id's must have been previously defined, and the test case screens captured via CAPSCNTST.

If a test run is specified instead of the default *LAST, the run number must be valid, ie: it is displayed from WRKTSTRUN.

If only screens with mismatches are required, the default print option of *MISMATCH may be specified.

Each screen is printed on a new page. Two print lines are used for each line or row of the screen. The first of these lines is the original test case image. The second line contains only the mismatching characters of the test run screen image. If the test run character is blank, a "^" (*not symbol) is printed. If there is a different display attribute, an “*" is printed. Additionally, every row of the test run image that differs from the original has a ">" at the beginning.

�How to Display the Screens from a Test Run

This section describes how to display the screen images from a specific test run. The images that are displayed are those that are sent from the program under test, and are the images that are compared by the Compare Screen Images (CMPSCNIMG) command.

For a full description of the DSPSCNIMG command and its parameters, refer to Appendix A.

To display the screen images of a test run, on a command line enter the following:

	DSPSCNIMG		APP(application)	TST(testid) RUN(*LAST)

The Application and Test_id must have previously been defined, and the test screens captured. (See "How to define a test case on" page �pageref TSTDFNHOW�20�)

The images are displayed in the order they were captured. The following function keys are available:

	F3 - Exit from DSPSCNIMG

	F7 - Display the previous screen image

	F8 - Display the next screen image

�

Section 3 - Working with . . . (Maintenance & Enquiries)

Working with Test Case Definitions (WRKTSTDFN)

The work with test case definitions command (WRKTSTDFN) displays a list of all test cases defined for the application. From this list, test cases may be either displayed, changed or deleted.

The WRKTSTDFN command shows the list display (Fig. 3.1) first.

�PRIVATE �� Test Cases for Application: BANK

 Options: 2=Change 4=Delete 5=Display 7=Test runs

 TEST ID TEST DESCRIPTION

 _ OPEN_AC Open a new account

 _ DEPOSIT Deposit funds into an account

 _ ORDCHKBOOK Order a cheque book

 _ BALANCE Account Balance Enquiry

 Bottom

 F3=Exit F6=Create F12=Cancel

Fig. 3.1

Column Descriptions:

Test Id:				The identifier of for the test case.

Test description:	A short description of the test case.

Valid Options:

2	Change 		- displays the Test Case maintenance screen (Fig. 3.2)

4	Delete 		- deletes the test case definition.

5	Display 	- displays full details of the test (Fig. 3.2)

7	Test runs	- displays a list of all test runs for the test case.

Valid Function keys:

F3			Exit to previous function (any unprocessed list options are ignored).

F6			Create a new Test Case definition.

F12		Ignore unprocessed list options and return to previous display.

�PRIVATE �� Test Case Maintenance

 Key in data, press ENTER

 Application Id __________

 Test Id __________

 Test member name

 Test description __

 Test Type _

 Exec environment _

 Number of test runs 0

 Number failed 0

 Extended text __ __

 F3=Exit F12=Cancel

Fig. 3.2

Field Descriptions:

Application id:	Application identifier and name.

Test id:				Test case identifier and name.

Test member name:	The member name for all Test-IT! files.

Test description:	Short description of the test case.

Test type:			A user defined field to describe the type of test being recorded. eg: D for Data entry, E for Enquiry, X for mixed.

Exec environment:	identifies the environment the test is to be executed in. Possible values are:

							I - Interactive

							J - Interactive debug mode

							B - Batch

							D - Batch debug mode

							A - Any environment

Number of test runs:The total number of test runs for this test case. (Note: This includes all deleted test runs)

Number failed:		The total number of failed test runs for this test case. (Note: This includes all deleted test runs)

Extended text:		Long or extended description of the test case.

Valid Function keys:

F3		Exit to previous function (any unprocessed list options are ignored)

F12	Ignore unprocessed list options and return to previous display.

�Working with Test Runs (WRKTSTRUN)

The work with test runs command (WRKTSTRUN) displays the summary details of all test runs for a specific test case. From the list of test runs, full details can be displayed, or the test run may be deleted, including all data captured by Test-IT!.

The WRKTSTRUN command shows the list display (Fig. 3.3) first.

�PRIVATE �� Test Runs for: TEST_ID in App: APP_ID

 Options: 4=Delete 5=Display

 Run # Test description ?

 _ 0 TEST_ID Test Case

 _ 1 Test after ChgRqs 1034 on 01/02/94 0

 _ 2 Test after ChgRqs 1045 on 04/02/94 0

 _ 3 Test after ChgRqs 1051 on 07/02/94 1

 _ 4 Second test for ChgRqs 1051 on 08/02/94 0

 _ 5 Test run by TESTUSER on 080294 at 121314 1

 _ 6 Test run by TESTUSER on 080294 at 151413 1

 F3=Exit F12=Cancel

Fig. 3.3

Column Descriptions:

Run#:					The run number of the test. Note: Run 0 is always the actual test case. It should only be deleted when the entire test case is to be deleted.

Test Description:	Text describing the test run. This may be either supplied by the user when the test is run, or defaults to the user id and date/time of the test run. (eg: runs 5 & 6 in Fig. 3.3)

?							Successful/Failed completion flag (0=Successful 1=Failed)

Valid Options:

4	Delete 				Deletes all data and information for that test

5	Display 			Displays full details of the test (Fig. 3.4)

Valid Function keys:

F3		Exit to previous function (any unprocessed list options are ignored)

F12	Ignore unprocessed list options and return to previous display.

�PRIVATE �� Test Run Information Display

 Application Id APP_ID

 Test run name TEST_ID

 Test Run number 1

 Test run mbr name A123456789

 Test run descn. Test after ChgRqs 1034 on 01/02/94

 Test failed flag 0 (0=Ok 1=Failed)

 Seconds test ran 0

 Number of Aux I/O 0

 F3=Exit F12=Cancel

Fig. 3.4

Field Descriptions:

Application id		Application identifier and name.

Test run name		Test case identifier and name.

Test run number	The unique run number of the test.

Test run mbr name	The member name for all Test-IT! files.

Test run descn.	Short description of the test run.

Test failed flag	Whether the test completed successfully

The following fields will only contain data if performance data was to be collected for the test run.

Seconds test run	The number of elapsed seconds the test ran for.

CPU seconds used:	The number of CPU seconds used by the test job.

Number of Aux I/O	The number of auxiliary I/O's generated by the test.

Valid Function keys:

F3			Exit to previous function (any unprocessed list options are ignored)

F12		Ignore unprocessed list options and return to previous display.

�Work with User Variables

The Work with User Variables (WRKUSRVAR) command provides the function to display and maintain User Variables.

Upon initiation, a list of current User variables is displayed, as per figure 3.5

Work with User Variables

 Options: 2=Change 3=Copy 4=Delete 5=Display

 @

 Variable Description Value

 _ ABC TEST VAR 11 ABCDEFGHIJ

 _ DATADJTST test for *DATADJ special value *DATADJ 1

 _ DEF *JOBYMD

 _ NEW1 New RCD 5 NEW VALUE5

 _ TEST1 This shouldn't be necessary wrkbuge y2

 _ TSTDATYMD Base test date in YMD format 971202

 _ TSTDAT1 Base test date 021297

 _ TSTDAT2 Base date plus 10 days *DATADJ 1

 _ TSTDAT3 Base date minus 15 days *DATADJ 1

 _ TSTDAT4 Base date plus 31 days *DATADJ 3

 _ TSTDAT5 Base date minus 30 days *DATADJ -

 BOTTOM

 Fn12 Cancel Fn6-Create Fn3-Exit

Fig. 3.5

Valid Options:

2 Change 	- Change the value of the selected record.

3 Copy 		- Copy the value of the selected User Variable to a new Variable.

4 Delete 	- deletes all data and information for that test.

5 Display	- displays full details of the test (Fig. 3.6).

Valid Function keys:

F3 	Exit to previous function (any unprocessed list options are ignored).

F6	Create a new User Variable.

F12	Ignore unprocessed list options and return to previous display.

User Variable Information Display

 Press ENTER to continue

 Variable name TSTDAT2

 Description Base date plus 10 days

 Variable value *DATADJ 10 TSTDATYMD

_

 _

 Fn12 Cancel

Fig. 3.6

�Work with Test Commands

The Work with Test Commands (WRKTSTCMD) command provides maintenance facilities for the steps of a test script run by the RUNTSTCMD function.

 WORK WITH TEST COMMANDS APP EG1

 TST S01

 Options: 2=Change 3=Copy 4=Delete 5=Display 7=Display Source

 @ .00

 TYP SEQ COMMAND

 2 1.00 DLTJOBSPLF JOB(*FIRST/*CURRENT/*CURRENT)

 2 2.00 @RST_DB EG1 Y2KTST

 2 3.00 @RST_DB3 EG1 Y2KTST

 5 1.00 S01EG1002 EG1 Y2KTST

 5 2.00 S01EG1014 EG1 Y2KTST

 5 3.00 S01EG1043 EG1 Y2KTST

 5 4.00 S01EG1704 EG1 Y2KTST

 5 5.00 S01EG1702 EG1 Y2KTST

 5 6.00 RUNSCNTST APP(EG1) TST(S01EG1736) PWD(ABC) USERID(ROBTST) TE

 7 1.00 S01EOM EG1 Y2KTST

 7 2.00 S01EOMSAV EG1 Y2KTST

 7 3.00 S01EOMVLD EG1 Y2KTST

 7 4.00 S01EOMTST EG1 Y2KTST

 BOTTOM

 F12=Cancel F6=Create F3=Exit

Fig. 3.7

Valid Options:

2 Change 	- Change the value of the selected record.

3 Copy 		- Copy the value of the selected User Variable to a new Variable.

4 Delete 	- deletes all data and information for that test.

5 Display	- displays full details of the test (Fig. 3.6).

7 Display Source - displays the source member associated with this step.

Valid Function keys:

F3 	Exit to previous function (any unprocessed list options are ignored).

F6		Create a new step in the script.

F12	Ignore unprocessed list options and return to previous display.

 TEST COMMAND INFORMATION

 PRESS ENTER TO CONTINUE

 APPLICATION EG1

 TEST ID S01

 CMD TYPE 2 2=PRE 5=TEST 7=OK 8=BAD 9=POST ALL

 SEQUENCE NO. 1.00

 MEMBER TO EXEC

 SOURCE FILE

 LIBRARY *LIBL

 TEST USR VAR. REL TEST VALUE 1=VAR 2=VALUE

 CMD TO EXECUTE DLTJOBSPLF JOB(*FIRST/*CURRENT/*CURRENT)

 F4=Prompt F12=Cancel

Fig. 3.8

Field Descriptions:

Application Id		Application identifier and name.

Test Id					Test case identifier and name.

Command type 		The type of step. Possible values are:

2		PRE 			- Pre-processing or test set up.

5		TEST 		- These steps are the actual test.

7		OK 			- Post processing for successful tests.

8		BAD 			- Post processing for failed tests.

9		POST ALL 	- Post processing for all tests.

Sequence No			The sequence number of the step. Steps are executed sequentially within type.

Mbr to execute		Name of the source member that contains the statements that will execute this step. This must be blanks if a value is entered in Command to execute.

Source file			Name of the source file.

Library					Name of the source library.

Test User Var.		Name of the User Variable to be tested for conditional steps.

Rel						Relationship of the User Variable to Test Value.

Test value			Name of User Variable containing the control value, or the actual control value.

Value type			Whether Test value is the name of a User Variable or an actual value.

Command to exec	The actual command to execute to perform this step. This must be blanks if a value is entered in Mbr to execute.

Valid Function keys:

F4		Display the command prompter when the cursor is on Cmd to exec, or a list of User Variables when the curson is on Test Usr Var. or Test value.

F12	Ignore unprocessed list options and return to previous display.

�

Appendix A - Command Syntax

� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\ADJDATFLD cmd.doc" �ADJDATFLD (Adjust Date Fields) command

The ADJDATFLD (Adjust Date Fields) command adds a specified number of days, which may be negative, to nominated fields in a database file.

Different date fields may be stored in different field types, but all fields must store their dates in the same representation, namely YMD, DMY or MDY.

All nominated fields must contain either zeros or a valid date. If the field contains zeros, then it is not altered.

ADJDATFLD		--- file(file-name)------------------ mbr(member)-----------------(

						--- fields(date-field)--------------- daysadj(number-of-days)-(

						--- datfldfmt(*DMY | *MDY | *YMD)------------------------------(

						--- bgnrcdnbr(*BGN | rcd-number)-------------------------------(

						--- nbrrcds(*END | rcd-number)-----------------------------------(

						--- maxerr(*NONE | *NOMAX | error-limit)------------------------

Required Parameters:

FILE Parameter

Specifies the qualified name of the file to be processed.

File-name:			The name of the file

FIELDS Parameter

Specifies up to 50 fields that contain dates. Supported data types are: *Char 6 or 8 bytes; *Zoned 6.0; *Packed 6.0. Supported date representations are: YMD, DMY or MDY.

Date-fields:			The database field names.

DAYSADJ Parameter

Specifies the number of days to add to each non-zero field in each record of the file. Negative values may be entered to move a date backwards.

Nbr-of-days:			The number of days to shift a date.

ADJTYP Parameter

Specifies the period type that the date fields are to be adjusted.

*DAYS:				The value of DAYSADJ are days

*MONTHS:				The value of DAYSADJ are months

*YEARS:				The value of DAYSADJ are years

Optional Parameters:

MBR Parameter

Specifies the member in the file to be processed.

*FIRST:				The first member in the file.

Member:				The name of the member to process.

DATFLDFMT Parameter

Specifies which date format the dates are in.

*YMD:				Year/Month/Day format.

*DMY:				Day/Month/Year format.

*MDY:				Month/Day/Year format.

BGNRCDNBR Parameter

Specifies the physical record number of the first record to be processed.

*BGN:				Changes commence at the first record.

rcd-number:			The record number at which changes commence.

NBRRCDS Parameter

Specifies the number of records to process

*END:					Records are processed until end of file is reached.

rcd-number:			The number of records to process.

MAXERR Parameter

Specifies the number of records to skip if one or more of the specified fields contains an invalid date. If the number of records in error exceeds the number specified in this parameter, an escape message is issued and processing terminates.

*NONE:				The first error will terminate processing.

*NOMAX:			All records with invalid dates will be skipped.

Error-limit:			Number of error records to skip.

Example1:

The following example will add 90 days to the fields VMCDAT VMSIDT VMRGDT VMAVDT in the file VMAS. The dates are stored in YMD format.

ADJDATFLD 	file(VMAS) fields(VMCDAT VMSIDT VMRGDT VMAVDT) daysadj(90) datfldfmt(*YMD)

Example2:

The following example will subtract 45 days from the fields VHPBDT VHSHDT in the file VHIS. Processing will begin at record 100, and process 50 records. The dates are stored in DMY format.

ADJDATFLD 	file(VHIS) fields(VHPBDT VHSHDT) daysadj(-45) datfldfmt(*DMY) bgnrcdnbr(100) nbrrcds(50)

��� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\CMPDBM cmd.doc" �CMPDBM (Compare Database Members) command

The CMPDBM (Compare Database Members) command compares records from one database file member to another. Either sections of the record, or the entire record may be compared. In addition, fields identified as containing dates may have a number of days added to the field in the file being examined before it is compared to the control file.

CMPDBM			---ctlfile(file-name)-----------------------------------(

						---examfile(file-name)-------------------------------(

						---ctlmbr(*FIRST | member)-----------------------(

						---exammbr(*CTLMBR | *FIRST | member)---(

						---rng((*FIRST *END){10})------------------------(

						---fields(*NONE | field{50})-------------------------(

						---daysadj(*NOCHG | days)-----------------------(

						---datfldfmt(*YMD|*MDY|*DMY)------------------(

						---bgnrcdctl(*BGN | rcdnbr)------------------------(

						---bgnrcdexam(*BGN | rcdnbr)--------------------(

						---nbrrcds(*END | rcdnbr)--------------------------(

						---maxerr(*NONE | *NOMAX | count)--------------

Required Parameters:

CTLFILE Parameter

Specifies the qualified name of the file against which records are to be compared.

File-name:			The name of the file

EXAMFILE Parameter

Specifies the qualified name of the file which is to have its records checked.

File-name:			The name of the file

Optional Parameters:

CTLMBR Parameter

Specifies the name of the member in the control file.

*FIRST:				The first member in the file.

Member:				The name of the member to process.

EXAMMBR Parameter

Specifies the name of the member in the examine file.

*CTLMBR:			The member named in the FROMMBR parameter

*FIRST:				The first member in the file.

Member:				The name of the member to process.

RNG Parameter

Specifies the character positions within the record that are to be compared. Up to 10 sets of column ranges may be specified.

*FIRST:				The comparison starts from the first character position.

posn:					The position the comparison is to start from.

*END:					The comparison ends at the last character position.

posn:					The position the comparison is to end at.

F10 Parameters:

FIELDS Parameter

Specifies up to 50 fields that contain dates. Supported data types are: *Char 6 or 8 bytes; *Zoned 6.0; *Packed 6.0. Supported date representations are: YMD, DMY or MDY.

*NONE:				No adjusted date comparisons are to be performed.

Date-fields:			The database field names.

DAYSADJ Parameter

Specifies the number of days to add to each non-zero field in each record of the file. Negative values may be entered to move a date backwards.

*NOCHG:			No adjusted date comparisons are to be performed.

Nbr-of-days:			The number of days to shift a date.

DATFLDFMT Parameter

Specifies which date format the dates are in.

*YMD:				Year/Month/Day format.

*DMY:				Day/Month/Year format.

*MDY:				Month/Day/Year format.

BGNRCDCTL Parameter

Specifies the physical record number of the first record to be processed from the control file.

*BGN:				Processing commences at the first record.

rcd-number:			The record number at which processing commences.

BGNRCDEXAM Parameter

Specifies the physical record number of the first record to be processed from the examined file.

*BGN:				Processing commences at the first record.

rcd-number:			The record number at which processing commences

NBRRCDS Parameter

Specifies the number of records to process.

*END:					Records are processed until end of file is reached.

rcd-number:			The number of records to be copied.

MAXERR Parameter

Specifies the number of failed compares to ignore. Records in error are reported. If the number of records in error exceeds the number specified in this parameter, an escape message is issued and processing terminates.

*NONE:				The first error will terminate processing.

*NOMAX:			All errors will be ignored.

Error-limit:			Number of error records to skip.

Example1:

The following example will add 90 days to the fields VMCDAT VMSIDT VMRGDT VMAVDT in the control file VMAS, then compare the record to the record just read from the examine VMAS file.

CMPDBM		 	ctlfile(VEHF/VMAS) examfile(ROBTSTDTA/VMAS) fields(VMCDAT VMSIDT VMRGDT VMAVDT) daysadj(90) datfldfmt(*YMD)

Example2:

The following example will record positions 10 thru 100 and 150 thru 256 of files VHIS and VHISCTL in ROBTSTDTA. Only 50 records will be compared, starting at record number 1000. Up to 5 errors will be ignored.

CMPDBM 		ctlfile(ROBTSTDTA/VHISCTL) examfile(ROBTSTDTA/VHIS) rng((10 100) (150 256)) bgnrcdctl(1000) bgnrcdexam(1000) nbrrcds(50) maxerr(5)

��CAPSCNTST (Capture Screen Test) command

The Capture Screen Test (CAPSCNTST) command captures all the images of a test case and stores them for later replay.

CAPSCNTST		>--APP(app-id)---TST(test-id)---PWD(password)--->

				---USERID(user)---DEVTYP(*5251)---TIMEOUT(sec)---

											 *5292

											 *5555B01

											 *3196

											 *3197

											 *3180

											 *3477FC

											 *3477FG

											 *5555C01

											 *5555G01

											 *5555G02

											 *3486

											 *3487HA

											 *3487HC

�PRIVATE ��Job: I Pgm: I��

�

Required Parameters:

APP Parameter

	Specifies the name of the Application Id for which test case definitions are to be displayed.

app-id:	Must be a valid name (begins with alphabetic, contains only alphabetic and numeric)

TST Parameter

	Specifies the test case id for which test runs are to be displayed.

test-id:	Must be a valid name, and have been defined via WRKTSTDFN.

PWD Parameter

	Specifies the password to be used when signing on to the test case session started by CAPSCNTST.

password:	Must be the password corresponding to the user profile specified in USERID.

Optional Parameters:

USERID Parameter

	Specifies the user profile to be used when signing on to the test case session started by CAPSCNTST.

*current:	The user profile of the job executing the command.

user:	The signon user profile.

DEVTYP Parameter

	Specifies the type of device to be used for the test. NOTE: The device type specified must be compatible with the actual device being used to run the screen capture. eg: Specifying a device type of *3180 when the job is running from a 5251 device is not permitted, while specifying *5251 from a 3180 device is.

*5251:	24 x 80 monochrome display

*5292:	24 x 80 color graphics display

*5555B01	24 x 80 monochrome DBCS display

*3196:	24 x 80 monochrome display

*3197:	24 x 80 color display

*3180:	27 x 132 monochrome display

*3477FC:	27 x 132 color display

*3477FG:	27 x 132 monochrome display

*5555C01	24 x 80 color DBCS display

*5555G01	24 x 80 monochrome graphics DBCS display

*5555G02	24 x 80 color graphics DBCS display

*3486:	24 x 80 monochrome display

*3487HA:	24 x 80 or 27 x 132 monochrome display

*3487HC:	24 x 80 or 27 x 132 color display

TIMEOUT Parameter

	Specifies the number of seconds that the capture job will wait for the virtual job running the program under test to respond to a screen. If the virtual job does not respond within the specified time, the virtual job is canceled, and an escape message is sent by the capture job. It is recommended that where possible, this function not be run on a heavily loaded machine with erratic response times.

15:		Wait 15 seconds for the virtual job.

sec:		Number of seconds to wait for a response to a screen.

�

Example 1:

	

	

CAPSCNTST		app(BANKDEP) tst(CHQBOOK) pwd(SIGNON) devtyp(*3197)

This example captures the screens for the Test Case CHQBOOK for application BANKDEP. The test job is run under the current user profile.

�

CMPSCNIMG (Compare Screen Images) command

The Compare Screen Images (CMPSCNIMG) command provides compares two sets of screen images from the same test case and application.

CMPSCNIMG		>--APP(app-id)---TST(test-id)------------------->

				---CTLRUN(*TESTCASE)---TSTRUN(*LAST)------------>

							runnbr					runnbr

				---COMPATR(*YES)-------PRTOPT(*MISMATCH)---------

							*NO					*ALL

�PRIVATE ��Job: I,B Pgm: I,B��

Required Parameters:

APP Parameter

	Specifies the name of the Application Id for which test case definitions are to be displayed.

app-id:	Must be a valid name.

TST Parameter

	Specifies the test case id for which test runs are to be displayed.

test-id:	Must be a valid name, and have been defined via WRKTSTDFN.

Optional Parameters:

CTLRUN Parameter:

	Specifies the test run number for the control, ie: the run to which the test images are to be compared.

*TESTCASE: The test case (run 0).

runnbr:	The number of the run.

TSTRUN Parameter

	Specifies the test run number that will be compared to the control run, ie the screens captured via CAPSCNTST.

*LAST:	The last test that was run.

runnbr:	The number of the run.

COMPATR Parameter

	Specifies whether the display attributes are to be included in the comparison.

*YES:	Display attributes will be compared.

*NO:		Display attributes will not be compared.

PRTOPT Parameter

	Specifies whether all screen images are to be printed, or only those that differ.

*MISMATCH: Only screens that differ are to be printed.

*ALL:	All screen images are to be printed.

Example 1:

CMPSCNIMG		app(BANKLOAN)		tst(APPROVEL)		compatr(*NO) prtopt(*ALL)

This example compares the screen images of the last test run of test id APPROVEL in application BANKLOAN, to the test case. Screen display attributes will not be compared, and all screen images will be printed.

�� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\CMPSPLF cmd.doc" �CMPSPLF (Compare Spool Files) command

The CMPSPLF (Compare Spool Files) command compares print lines from one spool file to another. Either sections of the print lines, or the entire print line may be compared.

CMPSPLF		---ctlsplf(file-name | *DBF)---(

					---ctlsplfnbr(*ONLY | *LAST | splnbr)---------------------------------(

					---ctljob(* | jobnbr/user/jobname)--------------------------------------(

					

					---ctlspldbf(*SPLF | library/dbfile)-------------------------------------(

					---ctlspldbfm(*CTLSPLF | *FIRST | *LAST | member)-----------(

					---chksplf(*CTLSPLF | *DBF | file-name)---------------------------(

					---ctlsplfnbr(*ONLY|*LAST|splnbr)------------------------------------(

					---ctlmbr(*FIRST | member)--(

					---exammbr(*CTLMBR | *FIRST | member)------------------------(

					---chkjob(* | jobnbr/user/jobname)------------------------------------(

					---chkspldbf(*SPLF | library/dbfile)-----------------------------------(

					---chkspldbfm(*CTLSPLF | *FIRST | *LAST | member)---------(

					---hgdlin(2 | nbrlines)---(

					---maxerr(*NONE | *NOMAX | count)----------------------------------

Required Parameters:

CTLFILE Parameter

Specifies the name of the spool file against which print lines are to be compared.

File-name:			The name of the file.

*DBF:					The spool file data is in a database file.

Optional Parameters:

CTLSPLFNBR Parameter

Specifies the spool number in the job of the control spool file.

*ONLY:				There is only one spool file in the job with the specified name.

*LAST:				The last spool file with the specified name in the job.

Splnbr:				The number of the spool file in the job.

CTLJOB Parameter

Specifies the qualified job name which contains the spool file.

*:						The job the command is executing in.

jobnbr:				Job number.

User:					User the job is running under.

Jobname:			Job name.

CTLSPLDBF Parameter:

Specifies the qualified name of the database file that contains the spool file data. NOTE: This file must have been created using the *FCFC format of the Copy Spool File (CPYSPLF) command. This parameter is only valid when CTLFILE(*DBF) is specified.

*SPLF:				The CMPSPLF command will create the file from the nominated spool file.

Dbfile:					The database file containing the spool file data.

*LIBL:					The file is found via the library list.

Library:				The library containing the file.

CTLSPLDBFM Parameter

Specifies the name of the member in the file named in the CTLSPLDBF parameter which contains the spool file data. This parameter is only valid when CTLFILE(*DBF) is specified.

*CTLSPLF:			The member has the same name as the file specified on the CTLSPLF parameter.

*FIRST:				The first member in the file.

*LAST:				The last member in the file.

Member:				The member containing the spool file data.

CHKFILE Parameter

Specifies the name of the spool file which contains the print lines to be compared.

File-name:			The name of the file.

*DBF:					The spool file data is in a database file.

CHKSPLFNBR Parameter

Specifies the spool number in the job of the check spool file.

*ONLY:				There is only one spool file in the job with the specified name.

*LAST:				The last spool file with the specified name in the job.

Splnbr:				The number of the spool file in the job.

CHKJOB Parameter

Specifies the qualified job name which contains the spool file being checked.

*:						The job the command is executing in.

jobnbr:				Job number.

User:					User the job is running under.

Jobname:			Job name.

CHKSPLDBF Parameter:

Specifies the qualified name of the database file that contains the spool file data. NOTE: This file must have been created using the *FCFC format of the Copy Spool File (CPYSPLF) command. This parameter is only valid when CHKFILE(*DBF) is specified.

*SPLF:				The CMPSPLF command will create the file from the nominated spool file.

Dbfile:					The database file containing the spool file data.

*LIBL:					The file is found via the library list.

Library:				The library containing the file.

CHKSPLDBFM Parameter

Specifies the name of the member in the file named in the CTLSPLDBF parameter which contains the spool file data. This parameter is only valid when CHKFILE(*DBF) is specified.

*CTLSPLF:			The member has the same name as the file specified on the CTLSPLF parameter.

*FIRST:				The first member in the file.

*LAST:				The last member in the file.

Member:				The member containing the spool file data.

HDGLIN Parameter

Specifies the number of print lines in the heading of each page, which are to be excluded from comparison.

2:						The default number of heading lines.

nbrlines:				The number of heading lines.

MAXERR Parameter

Specifies the number of failed compares to ignore. Records in error are reported. If the number of records in error exceeds the number specified in this parameter, an escape message is issued and processing terminates.

*NONE:				The first error will terminate processing.

*NOMAX:			All errors will be ignored.

Error-limit:			Number of error records to skip.

Example1:

The following example will compare the most recent spool file INVOICES in the current job to INVOICES in job INV_CTL. It is assumed that there is only one spool file named INVOICES in job INV_CTL, and that there are to be no errors.

CMPSPLF 		ctlsplf(INVOICES) ctlsplfnbr(*LAST) chkjob(INV_CTL)

Example2:

The following example will compare the spool file INVOICES in the current job to the print data contained in database file INVTSTCTL member JAN2000. It is assumed that there is only one spool file named INVOICES in the current job. There are five heading lines to be ignored, and a maximum of ten errors are permitted.

Note: Storing the control spool file in a database file provides faster performance.

CMPSPLF 		ctlsplf(INVOICES) chksplf(*DBF) chkspldbf(ROBTSTDTA/INVTSTCTL) chkspldbfm(JAN2000) hdglin(5) maxerr(10)

��� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\CPYKEYRCDS cmd.doc" �CPYKEYRCDS (Copy Key Records) command

The CPYKEYRCDS (Copy Key Records) command copies records from one file to another, based upon matching key field values in a reference file.

Note: The target file and member need to exist prior to the execution of this command.

CAUTION: It is the users responsibility to ensure that the record formats of the target file are compatible with the source file.

CPYKEYRCDS	---fromfile(file-name-)-----------------------------(

						--- relfile(file-name)--------------------------------(

						--- tofile(file-name)---------------------------------(

						--- joinflds((from-fld rel-fld join-rel))----------(

										(______ 10 ______(

						--- frommbr(*FIRST | member)-----------------(

						--- tombr(*FROMMBR | *FIRST | member)-(

						--- mbropt(*REPLACE | *ADD)-----------------(

						--- keyflds(key-fld)---------------------------------(

										 (_ 10 _(

						---uniquekey(nbr-of-keys)------------------------(

						--- crtfile(*NO | *YES)-----------------------------(

						---nbrrcds(*END | nbr-rcds)------------------------

Required Parameters:

FROMFILE Parameter

Specifies the qualified name of the file from which records are to be copied.

File-name:			The name of the file

RELFILE Parameter

Specifies the qualified name of the file which contains the key field values that are to be copied.

File-name:			The name of the file

TOFILE Parameter

Specifies the qualified name of the file to which records are to be copied.

File-name:			The name of the file

JOINFLDS Parameter

Specifies the mapping of the fields in the FROMFILE to the RELFILE for key value selection.

Element 1: From file field

from-fld:				The from file key field name.

Element 2: Relation file field

rel-fld:					The corresponding field in the RELFILE.

Element 3: Join operator - the relationship between field values

*EQ:					The two fields are to have the same value to cause a record to be copied from the FROMFILE to the TOFILE.

Optional Parameters:

FROMMBR Parameter

Specifies the name of the member in the from file.

*FIRST:				The first member in the file.

Member:				The name of the member to process.

TOMBR Parameter

Specifies the name of the member in the to file.

*FROMMBR:		The member named in the FROMMBR parameter

*FIRST:				The first member in the file.

Member:				The name of the member to process.

RNDMULT Parameter

Specifies the average number of records to skip.

*NBRRCDS:			The number of records in the member divided by the number of records to copy.

factor:					The number of records to skip.

MBROPT Parameter

Specifies whether the records are to be added to the target file, or replace the current contents of the target file.

*REPLACE:			Existing records are replaced.

*ADD:					Records are added to existing records.

KEYFLDS Parameter

Specifies the list of fields that define the sequence of the output records. It is also required if unique keys are requested, and specifies the fields that define a unique key.

*NONE:				The output data is not to be sorted.

Key-fld:				Key field name(s).

UNIQUEKEY Parameter

Specifies, when only one record with a given key value is to exist in the TOFILE, the number of key fields from the KEYFLDS parameter that define a unique key.

*NONE:				Unique key checking is not performed.

Nbr-of-keys:			Number of key fields.

CRTFILE Parameter

Specifies whether the TOFILE is to be created if it does not already exist.

*NO:					An error occurs if the TOFILE does not exist.

*YES:					The TOFILE is to be created.

NBRRCDS Parameter

Specifies the number of records to process.

*END:					Records are processed until end of file is reached.

rcd-number:			The number of records to be copied.

Example1:

The following example copies records from file VHIS in VEHF to VHIS in VEHTSTDTA.

Following the copy, all the records in VHIS that have stock numbers matching records in the new version of VMAS are copied into VHIS in VEHTSTDTA.

CPYKEYRCDS 	fromfile(VEHF/VHIS) relfile(VEHTSTDTA/VMAS) tofile(VEHTSTDTA/VHIS) joinflds((VHSTNO VMSTNO))

Example2:

The following example copies records from file VTYP in VEHF to VTYP in VEHTSTDTA.

All the records in VTYP that have vehicle type codes matching records in the new version of VMAS are copied into VTYP in VEHTSTDTA. There is to be only one record for each vehicle type code in the new file.

CPYKEYRCDS 	fromfile(VEHF/VTYP) relfile(VEHTSTDTA/VMAS) tofile(VEHTSTDTA/VTYP) joinflds((VTTYPE VMTYPE)) keyflds(VTTYPE) uniqeukey(1)

��� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\CPYRNDRCDS cmd.doc" �CPYRNDRCDS (Copy Random Records) command

The CPYRNDRCDS (Copy Random Records) command copies a random selection of records from one file to another.

Note: The target file and member need to exist prior to the execution of this command.

CAUTION: It is the users responsibility to ensure that the record formats of the target file is compatible with the source file.

CPYRNDRCDS	---fromfile(file-name-)----------------------------(

						---tofile(file-name)---------------------------------(

						---frommbr(*FIRST | member)-----------------(

						---tombr(*FROMMBR | *FIRST | member)-(

						---rndmult(*NBRRCDS | factor)---------------(

						---mbropt(*REPLACE | *ADD)-----------------(

						---bgnrcdnbr(*BGN | rcd-nbr)------------------(

						---nbrrcds(*END | nbr-rcds)-----------------------

Required Parameters:

FROMFILE Parameter

Specifies the qualified name of the file from which records are to be copied.

File-name:			The name of the file

TOFILE Parameter

Specifies the qualified name of the file to which records are to be copied.

File-name:			The name of the file

Optional Parameters:

FROMMBR Parameter

Specifies the name of the member in the from file.

*FIRST:				The first member in the file.

Member:				The name of the member to process.

TOMBR Parameter

Specifies the name of the member in the to file.

*FROMMBR:		The member named in the FROMMBR parameter

*FIRST:				The first member in the file.

Member:				The name of the member to process.

RNDMULT Parameter

Specifies the average number of records to skip.

*NBRRCDS:			The number of records in the member divided by the number of records to copy.

factor:					The number of records to skip.

MBROPT Parameter

Specifies whether the records are to be added to the target file, or replace the current contents of the target file.

*REPLACE:			Existing records are replaced.

*ADD:					Records are added to existing records.

BGNRCDNBR Parameter

Specifies the physical record number of the first record to be processed.

*BGN:				Copying commence at the first record plus the number of records to skip.

rcd-number:			The record number at which copying commences.

NBRRCDS Parameter

Specifies the number of records to process.

*END:					Records are processed until end of file is reached.

rcd-number:			The number of records to be copied.

Example1:

The following example copies 50 randomly selected records from VORD in VEHF to VORD in ROBTSTDTA.

CPYRNDRCDS 	fromfile(VEHF/VORD) tofile(ROBTSTDTA/VORD) nbrrcds(50)

Example 2:

The following example copies records from file VMAS in VEHF to VMAS in VEHTSTDTA.

Following the copy, all the records in VHIS that have stock numbers matching records in the new version of VMAS are copied into VHIS in VEHTSTDTA. This example shows how to populate files having foreign keys or constraints on the target file of a CPYRNDRCDS command.

CPYRNDRCDS 	fromfile(VEHF/VMAS) tofile(VEHTSTDTA/VMAS) rndmult(250)

OPNQRYF 			file((VEHF/VHIS) (VEHTSTDTA/VMAS)) format(VHIS) jfld((VHIS/VHSTNO VMAS/VMSTNO *EQ)) optallap(*YES) /*NB this parm is not necessary */

CPYFRMQRYF 	fromopnid(VHIS) tofile(ROBWRK/VHIS) mbropt(*REPLACE)

CLOF 					VHIS

NOTE: if only a single record per primary key is required in the target CPYFRMQRYF file, then the KEYFLD and UNIQUEKEY(1) parameters can be used.

��

DSPSCNIMG (Display Screens from a Test Run) command

The Display the Screens from a Test Run (DSPSCNIMG) command displays the captured screen images from a specific test run.

DSPSCNIMG		>--APP(app-id)---------TST(test-id)------------->

				---RUN(*LAST)----------output(*)-----------------

						*TESTCASE				 *PRINT

						runnbr

�PRIVATE ��Job: I,B Pgm: I,B��

Required Parameters:

APP Parameter

	Specifies the name of the Application Id for which test case definitions are to be displayed.

app-id:	Must be a valid name.

TST Parameter

	Specifies the test case id for which test runs are to be displayed.

test-id:	Must be a valid name, and have been defined via WRKTSTDFN.

Optional Parameters:

RUN Parameter:

	Specifies the test run number to be displayed.

*LAST:	The last test that was run.

*TESTCASE: The test case (run 0).

runnbr:	The number of the run.

OUTPUT Parameter

	Specifies where the display output is to be sent.

*:		The images are to be displayed on the screen.

*PRINT:	The images are to be printed.

Example 1:

DSPSCNIMG		app(BANKLOAN)		tst(APPLY)

Displays the screens for test APPLY in application BANKLOAN.

�

EDTSCNMSK (Edit Screen Masks) command

The Edit Screen Masks (EDTSCNMSK) command provides the facility to create, change and delete compare masks for captured tests.

	EDTSCNMSK		>--APP(app-id)---TST(test-id)--------------------

�PRIVATE ��Job: I Pgm: I��

Required Parameters:

APP Parameter

	Specifies the name of the Application Id for which test case definitions are to be displayed.

app-id:	Must be a valid name.

TST Parameter

	Specifies the test case id for which test runs are to be displayed.

test-id:	Must be a valid name, and have been defined via WRKTSTDFN.

Example 1:

	

	EDTSCNMSK		app(BANKDEP) tst(CHQBOOK)

This example edits the screen masks for the test CHQBOOK in application BANKDEP.

�� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\RUNCLSTM cmd.doc" �RUNCLSTM (Run CL Statements) Command

The RUNCLSTM (Run CL Statements) command executes the CL statements in a specified source member.

RUNCLSTM		--- mbr(member)------------------ file(*LIBL/QCLSRC)--------(

						--- prtopt(*YES | *NO)----------- jobd(*USRPRF | *NONE)-(

																			 *LIBL/job-d

						--- jobq(*JOBD)-------------------- jobdate(*JOBD)-------------(

						 			*LIBL/job-q								date

						--- scddate(*CURRENT | date) ----------------------------------(

						--- scdtime(*CURRENT | time)---------------------------------------

Required Parameters:

MBR Parameter

Specifies the member in the file to be processed.

Member:				The name of the member to process.

Optional Parameters:

FILE Parameter

Specifies the qualified name of the source file to be processed.

File-name:			The name of the file

Library qualifier:

*LIBL:					The first file in the library list is processed.

*CURLIB:			The file in the job’s current library is processed.

Library:				The file in the specified library is processed.

JOBD Parameter

Specifies the qualified name of the job description to be used to submit the job to batch.

*USRPRF:			The job description specified in the current Users User Profile is used.

*NONE:				The statements are executed within the current job.

Jobd:					Name of the Job Description.

Library qualifier:

*LIBL:					The first JOBD in the library list is processed.

*CURLIB:			The JOBD in the job’s current library is processed.

Library:				The JOBD in the specified library is processed.

Additional Parameters:

JOBQ Parameter

Specifies the qualified name of the job queue to submit the job to.

*JOBD:				The job queue specified in the job description is used.

Jobq:					Name of the Job Queue.

Library qualifier:

*LIBL:					The first JOBQ in the library list is processed.

*CURLIB:			The JOBQ in the job’s current library is processed.

Library:				The JOBQ in the specified library is processed.

JOBDATE Parameter

Specifies the job run date for submitted jobs.

*JOBD:				The date specified on the Job Description.

date:					Run date for the job.

SCDDATE Parameter

Specifies for submitted jobs, the date the job is to be scheduled for execution.

*CURRENT:			The job is scheduled for the current date.

date:					Scheduled execution date.

SCDTIME Parameter

Specifies for submitted jobs, the time the job is to be scheduled for execution.

*CURRENT:			The job is scheduled for the current time.

date:					Scheduled execution time.

Example1:

The following example will submit a batch job to execute the CL statements in member TESTRUN from source file TESTCL.

RUNCLSTM 		mbr(TESTRUN) file(TESTCL)

Example2:

The following example will execute the CL statements in member TEST002 from source file QCLSRC immediately within the current job.

RUNCLSTM 		mbr(TEST002) jobd(*NONE)

Example3:

The following example will submit a batch job to execute the CL statements in member TEST03 from source file TESTCL. Execution is scheduled to begin at 10:30pm on the day it was submitted

RUNCLSTM 		mbr(TEST03) file(TESTCL) scdtime(2230)

��

RUNSCNTST (Run a Screen Test) command

The Run a Screen Test (RUNSCNTST) command runs or replays a captured test case.

RUNSCNTST		>--APP(app-id)---TST(test-id)---PWD(password)--->

				---USERID(user)---DEVTYP(*5251)---TIMEOUT(sec)(

											 *5292

											 *5555B01

											 *3196

											 *3197

											 *3180

											 *3477FC

											 *3477FG

											 *5555C01

											 *5555G01

											 *5555G02

											 *3486

											 *3487HA

											 *3487HC

				---TEXT(*BLANKS)---COMPATR(*YES)---------------(

					 'description' *NO

				---KEYTHINK(*TESTCASE)-------------------------(

							 *NODLY

							 *RNDSHORT

							 *RNDLONG

				---JOBD(*USRPRF)----JOBQ(*JOBD)-----------------

						 userid job-q

�PRIVATE ��Job: I,B Pgm: I,B��

�

Required Parameters:

APP Parameter

	Specifies the name of the Application Id for which test case definitions are to be displayed.

app-id:	Must be a valid name.

TST Parameter

	Specifies the test case id for which test runs are to be displayed.

test-id:	Must be a valid name, and have been defined via WRKTSTDFN.

PWD Parameter

	Specifies the password to be used when signing on to the test case session started by CAPSCNTST.

password:	Must be the password corresponding to the user profile specified in USERID.

Optional Parameters:

USERID Parameter

	Specifies the user profile to be used when signing on to the test case session started by RUNSCNTST.

*current:	The user profile of the job executing the command.

user:	The signon user profile.

DEVTYP Parameter

	Specifies the type of device to be used for the test. NOTE: The device type specified must be compatible with the actual device being used to run the screen capture. eg: Specifying a device type of *3180 when the job is running from a 5251 device is not permitted, while specifying *5251 from a 3180 device is.

*5251:		24 x 80 monochrome display

*5292:		24 x 80 color graphics display

*5555B01	24 x 80 monochrome DBCS display

*3196:		24 x 80 monochrome display

*3197:		24 x 80 color display

*3180:		27 x 132 monochrome display

*3477FC:	27 x 132 color display

*3477FG:	27 x 132 monochrome display

*5555C01	24 x 80 color DBCS display

*5555G01	24 x 80 monochrome graphics DBCS display

*5555G02	24 x 80 color graphics DBCS display

*3486:		24 x 80 monochrome display

*3487HA:	24 x 80 or 27 x 132 monochrome display

*3487HC:	24 x 80 or 27 x 132 color display

TIMEOUT Parameter

	Specifies the number of seconds that the capture job will wait for the virtual job running the program under test to respond to a screen. If the virtual job does not respond within the specified time, the virtual job is canceled, and an escape message is sent by the replay job. It is recommended that where possible, this function not be run on a heavily loaded machine with erratic response times.

15:		Wait 15 seconds for the virtual job.

sec:		Number of seconds to wait for a response to a screen.

TEXT Parameter

	Specifies a short description of the test being performed.

*BLANKS:	A default text including user, date and time is generated.

description: A User description.

COMPATR Parameter

	Specifies whether the display attributes are to be included when comparing screen images for differences.

*YES:	Display attributes are compared.

*NO:	Display attributes are not compared.

KEYTHINK Parameter

	Specifies the key-think time, in seconds, to use between responding to screens from the program under test.

*TESTCASE: The actual key-think time when the screens were captured is used.

*NODLY:	There is no delay when responding to screens from the program.

*RNDSHORT:	A random number from 0 thru 9 is used.

*RNDLONG:	A random number from 0 thru 50 is used.

JOBD Parameter

	Specifies the name of the job description used to submit the replay to batch.

*USRPRF:	The default jobD for the user profile.

*NONE:		The job is not submitted, but is run “in line”.

Userid:	The jobD to run the job under.

JOBQ Parameter

	Specifies the job queue to place the batch job on for execution.

*JOBD:		The job queue specified by the JobD used.

Job-q:		The job queue to run the job from.

�

Example 1:

	

	

RUNSCNTST		app(BANKDEP) tst(CHQBOOK) pwd(SIGNON) devtyp(*3197) text('Test for ChgRqs 1234') keythink(*RNDSHORT)

This example runs the test CHQBOOK in application BANKDEP, with a short random key-think time.

�� INCLUDETEXT "C:\\My Documents\\APPGEN\\Test-It\\RUNTSTCMD cmd.doc" �RUNTSTCMD (Run Test Commands) Command

The RUNTSTCMD (Run Test Commands) command executes test scripts as defined using the WRKTSTCMD command. Test scripts are CL statements contained in one or more source files.

The normal sequence of processing scripts is: Setup (2), Test (5), Ok (7), Post (9). If an error is encountered in either a Setup (2) or Test (5) script member, then processing continues with the first Fail (8) script, and continues through all the Post (9) scripts.

RUNTSTCMD	--- app(AppId)---------------------- tst(TestId)---------------------(

						--- jobd(*USRPRF | *NONE)--- jobq(*JOBD)------------------(

								 *LIBL/job-d						 *LIBL/job-q

						--- chgusrvar((var-name var-value))-------------------------(

											(________ 10 ______(

						--- jobsbmnam(*TST)------------ jobdate(*JOBD)-------------(

						 					 job-name					 date

						--- inllibl(*CURRENT | *JOBD | *SYSVAL)--------------------(

						--- curlib(*CURRENT | *USRPRF | *CRTDFT)---------------(

						--- scddate(*CURRENT | date) ----------------------------------(

						--- scdtime(*CURRENT | time)-----------------------------------(

						--- pgmexcanl(pgm-name)----- updprod(*NO | *YES)---------

											 (__ 10 __(

�Required Parameters:

APP Parameter

Specifies the Application Id for which the test is to run.

AppId:				The name Application Id.

TST Parameter

Specifies the Test Id for which the test is to run.

TestId:				The name Test Id.

Optional Parameters:

JOBD Parameter

Specifies the qualified name of the job description to be used to submit the job to batch.

*USRPRF:			The job description specified in the current Users User Profile is used.

*NONE:				The statements are executed within the current job.

Jobd:					Name of the Job Description.

Library qualifier:

*LIBL:					The first JOBD in the library list is processed.

*CURLIB:			The JOBD in the job’s current library is processed.

Library:				The JOBD in the specified library is processed.

CHGUSRVAR Parameter

Specifies any User Variables, and the new values, that are to be changed at the beginning of the run.

Single value:

*NONE:				No User Variables are to be changed.

Variable name element

Var-name:			Name of the User Variable.

Variable value element:

Var-value:			The new value of the Variable.

Additional Parameters:

JOBQ Parameter

Specifies the qualified name of the job queue to submit the job to.

*JOBD:				The job queue specified in the job description is used.

Jobq:					Name of the Job Queue.

Library qualifier:

*LIBL:					The first JOBQ in the library list is processed.

*CURLIB:			The JOBQ in the job’s current library is processed.

Library:				The JOBQ in the specified library is processed.

JOBDATE Parameter

Specifies the job run date for submitted jobs.

*JOBD:				The date specified on the Job Description.

date:					Run date for the job.

SBMJOBNAM Parameter

Specifies the job name of the submitted job.

*TST:					The value of the TST parameter is used as the job name.

Job-name:			The job name.

INLLIBL Parameter

Specifies the initial library list for submitted jobs.

*CURRENT:			The current job’s library list.

*JOBD:				The library list specified on the Job Description.

*SYSVAL:			The library list specified by the QUSRLIBL special value.

CURLIB Parameter

Specifies the initial current library for submitted jobs.

*CURRENT:			The current job’s current library.

*USRPRF:			The current library specified on user’s User Profile.

*CRTDFT:			There is no Current library. Objects created into *CURLIB are placed in the QGPL library.

SCDDATE Parameter

Specifies for submitted jobs, the date the job is to be scheduled for execution.

*CURRENT:			The job is scheduled for the current date.

date:					Scheduled execution date.

SCDTIME Parameter

Specifies for submitted jobs, the time the job is to be scheduled for execution.

*CURRENT:			The job is scheduled for the current time.

date:					Scheduled execution time.

PGMEXCANL Parameter

Specifies a list of up to ten programs for which execution analysis data can be collected.

Restriction: The use of this function places the job into Debug mode, therefore it should not be used with other debug related functions. (eg: CAPPGMEXC, CAPFIOINF)

*NONE:				No execution analysis data is collected.

Pgm-name:			The names of the program to be analised.

UPDPROD Parameter

Specifies whether files on *PROD libraries can be updated when collecting program execution analysis data.

*NO:					*PROD library files cannot be updated.

*YES:					*PROD library files can be updated.

�

Example1:

The following example will submit a batch job to execute the test case PGM001T1 in application TESTAPP.

RUNTSTCMD 	app(TESTAPP) tst(PGM001T1)

Example2:

The following example will submit a batch job to execute the test case SYSPGM010 in application TESTAPP, with a job date of 29/02/2000. Before any statements are executed from the test scripts, the User Variable BASEDATE is changed.

RUNTSTCMD 	app(TESTAPP) tst(SYSTST010) chgusrvar((BASEDATE 010100)) jobdate(290200)

��

WRKTSTDFN (Work with Test Definitions) command

The work with test definitions (WRKTSTDFN) command provides the facility of displaying, creating, changing and deleting Test Case Definitions.

Refer to Work with Test Case Definitions on page �pageref TSTDFNWRK�Error! Bookmark not defined.� for a description of the screens.

WRKTSTDFN		APP(app-id)

�PRIVATE ��Job: I Pgm: I��

Required Parameters:

APP Parameter

	Specifies the name of the Application Id for which test case definitions are to be displayed.

app-id:	Must be a valid name.

Example 1:

	

WRKTSTDFN		app(BANKATM)

This example displays the list of all test case definitions for the application BANKATM.

�

WRKTSTRUN (Work with Test Runs) command

The work with test runs (WRKTSTRUN) command provides the facility of displaying and deleting Test Runs. Definitions.

Refer to Work with Test Runs on page �pageref TSTRUN_WRK�Error! Bookmark not defined.� for a description of the screens.

WRKTSTRUN		APP(app-id) TST(test-id)

�PRIVATE ��Job: I Pgm: I��

Required Parameters:

APP Parameter

	Specifies the name of the Application Id for which test case definitions are to be displayed.

app-id:	Must be a valid name.

TST Parameter

	Specifies the test case id for which test runs are to be displayed.

test-id:	Must be a valid name, and have been defined via WRKTSTDFN.

Example 1:

	

WRKTSTRUN		app(BANKLOAN) tst(CLOSEOUT)

This example displays the list of all test runs for the test case CLOSEOUT in application BANKLOAN.

Copyright 1994 Application Genesis Pty. Ltd.

Copyright 1994 Application Genesis Pty. Ltd.

�

�

	�page * arabic�28�

	�page * arabic�29�

